摘要:在本研究中,我们提出了一种混合制造工艺来生产高质量的 Ti6Al4V 零件,该工艺结合了增材粉末激光定向能量沉积 (L-DED) 用于制造预制件,随后的热锻作为热机械加工 (TMP) 步骤。在 L-DED 之后,材料在两种不同的温度 (930 ◦ C 和 1070 ◦ C) 下热成型,随后进行热处理以消除应力退火。在小子样本上进行拉伸试验,考虑到相对于 L-DED 构建方向的不同样本方向,并产生非常好的拉伸强度和延展性,类似于或优于锻造材料。所得微观结构由非常细粒、部分球化的 α 晶粒组成,平均直径约为 0.8–2.3 µ m,位于 β 相基质内,占样本的 2% 至 9%。在亚β转变温度范围内锻造后,典型的 L-DED 微观结构不再可辨别,并且增材制造 (AM) 中常见的拉伸性能各向异性显著降低。然而,在超β转变温度范围内锻造会导致机械性能的各向异性仍然存在,并且材料的拉伸强度和延展性较差。结果表明,通过将 L-DED 与 Ti6Al4V 亚β转变温度范围内的热机械加工相结合,可以获得适用于许多应用的微观结构和理想的机械性能,同时具有减少材料浪费的优势。
第 45 卷 第 5 期 中 国 电 机 工 程 学 报 Vol.45 No.5 Mar.5, 2025 2025 年 3 月 5 日 Proceedings of the CSEE ©2025 Chin.Soc.for Elec.Eng.2003
增材制造已成为全球经济的重要组成部分,它彻底改变了制造工艺、增强了机械部件并解决了提高生产率等当前行业挑战。本研究探讨了 3D 打印 Onyx 的抗拉强度和刚度,重点研究了打印周边层的影响。结果表明,增加周边层可通过加厚外壁和改善应力分布来提高抗拉强度。实验表明,2 到 15 层之间的改进不超过 20%,并且周边层对韧性没有影响。此外,一旦有足够的周边层,内部填充模式和密度会在整体强度中发挥更重要的作用。两层通常足以确保凝聚力、最大限度地减少变形并防止微裂纹扩展。Onyx 的尼龙基质和碳纤维通过缓解周边层和内层之间的过渡区的应力集中进一步提高了耐久性。然而,超过某一点后,增加层数带来的收益就会递减,主要是增加材料消耗,而强度却没有显著提高。这些发现支持未来研究剪切强度和抗冲击性等附加性能,同时平衡性能、材料使用和可持续性。
图 1:制造带有水凝胶涂层的线圈支撑血管移植物。A) 通过初始电纺层制造电纺套管,然后使用定制溶液打印机进行线圈沉积,最后形成最终电纺层。使用四氢呋喃进行溶剂蒸汽焊接两小时,以提高构造完整性。B) 通过扩散介导的氧化还原引发 PEUDAm 第一网络交联对电纺移植物进行水凝胶涂层,从而确定水凝胶涂层的厚度。然后,NAGA、bisAAm 和光引发剂膨胀到第一网络中,并通过光引发固化,形成最终的互穿网络水凝胶涂层。
使用从拆除废物中产生的再生骨料来生产混凝土是减少建筑环境对环境影响的一种有希望的选择。然而,预测再生骨料混凝土的硬化性能是其在建筑领域大规模部署的主要障碍之一。由于传统的经验方法对于预测新的再生骨料配方的性能不太可靠,近年来,人工智能方法已得到广泛发展,以实现这一目标。在本文中,我们对预测再生骨料混凝土的机械性能和进行敏感性分析的人工智能 (AI) 方法进行了广泛的文献综述。本研究对文献中发现的主要方法和算法的适用性、准确性和计算要求进行了详尽的描述、检查和讨论。此外,还强调了各种算法的优点和缺点。人工智能算法已在各种预测应用中取得了成功,并且准确率很高。虽然这些算法是用于估计再生骨料混凝土混合物成分和机械性能的强大预测工具,但它们的性能高度依赖于数据结构和超参数选择。这项研究可以帮助工程师和研究人员更好地决策使用人工智能算法进行机械性能预测和/或优化再生骨料混凝土的配方。
在这项研究中,使用ANSYS-CFX软件进行离心压缩机的数值模拟。重点在于研究入口尖端清除率(ITC)对内部复合物流量和离心压缩机的空气动力学性能的影响。具体而言,本文主要强调了ITC对离心压缩机的多层次效率和总压力比,以及叶片尖端的速度和压力的变化,叶片尖端的时空演化(尖端裂缝涡旋(TLLV)(TLV)(TLV)以及沿压力和veLocity的波动。分析额定工作条件下的尖端裂变流量(TLF)和TLV运动模式,揭示了一场革命内的时空演化。快速傅立叶变换(FFT)频谱分析结果表明,TLV运动模式可能受到ITC大小的影响。叶片尖端区域中的流体流动阻力和回流逐渐降低,有效增强流场稳定性,并消除了旋转出口处的回流涡流,从而通过减小ITC有效扩展了离心压缩机的工作范围。通过降低ITC,离心压缩机的空气动力学性能在培养基和高流速范围内有效增加。此外,观察到刀片尖端区域中的压力,速度和负载与ITC没有线性关系,从而导致有关ITC的空气动力学性能的非线性变化。压力和速度光谱分析表明,与中间相比,TLF的效果在流通过的顶部更强。此外,随着ITC的增加,TLF的效果在压力侧的中间和顶部(PS)下降,同时在PS的底部和吸力侧(SS)增加。
摘要 金属基复合材料 (MMC) 因其增强的机械性能而广泛用于各种应用。MMC 能够减轻结构重量,从而降低燃料消耗,因此在地面运输和航空领域尤其具有吸引力。在本研究中,通过搅拌铸造 [SC] 路线生产了用二硼化锆 (ZrB 2 ) 增强的 AA2017。增强颗粒 ZrB 2 以不同的重量百分比 0、5、10 和 15 混合。根据 ASTM 标准,对铸造样品进行机械表征,例如显微硬度和拉伸测试以及扫描电子显微镜 (SEM) 分析。SEM 分析表明 ZrB 2 颗粒在 AA2017 基体中分散均匀,团聚较少。机械测试结果显示性能有所改善,并且这是针对 AA2017-15wt.% ZrB 2 合成复合材料实现的。显微硬度测试显示,与基础铸态合金相比,VHN 值增加了约 101 (40.28%)。极限抗拉强度 (UTS) 也比铸态合金提高了约 155 MPa (59.79%)。
摘要:本研究调查了使用 CO₂ 激光焊接工艺生产的 AISI 304 钢焊缝的机械和微观结构行为。重点是了解不同焊接条件对 2 毫米厚钢板的影响。焊接在三种条件下进行:无根部开口的自热焊、使用填充金属的 1 毫米根部开口焊接以及使用填充金属但没有根部开口的焊接。使用扫描电子显微镜 (SEM)、显微硬度测试、单轴疲劳测试和随后的断口检查分析了接头。微观结构分析表明,在所有条件下,自热焊缝中存在大量孔隙,并且主要形成 delta 铁素体和板条状铁素体相。在机械性能方面,自热焊缝在母材中表现出断裂,而使用填充金属的焊缝在焊缝金属附近表现出断裂。尽管平均抗疲劳性存在明显差异,但自热焊缝和使用填充金属但没有根部开口的焊缝表现出更高的失效循环次数。关键词:激光焊接,不锈钢,微观组织,力学性能,疲劳 1. 引言
a UNIDEMI,机械与工业工程系,里斯本新大学科学技术学院,Caparica 2829-516,葡萄牙 b 智能系统联合实验室,LASI,吉马良斯 4800-058,葡萄牙 c 里约热内卢联邦大学(UFRJ)冶金与材料工程项目,CEP,里约热内卢 RJ 21941-972,巴西 d Helmholtz-Zentrum Hereon,材料物理研究所,Max-Planck-Str. 1,Geesthacht 21502,德国和南京理工大学材料科学与工程学院 Herbert Gleiter 纳米科学研究所,南京 210094,中国 f Institut Pprime,UPR CNRS 3346,材料物理和力学系,ISAE-ENSMA,1 Avenue Cl´ement Ader,BP 40109,Chasseneuil,Futuroscope 86 961,法国 g CENIMAT|i3N,里斯本新大学科学与技术学院材料科学系,卡帕里卡,葡萄牙
日常生活中先进复合材料的使用量不断增加,并取代了现有的整体材料。这些复合材料是根据人类的特定应用需求而设计和制造的,也符合标准要求。在本研究中,从农业和工业废弃物中提取的陶瓷增强材料铝金属基复合材料,即AA7075/焊渣和 AA7075/稻壳灰通过液态金属搅拌铸造路线制造,增强材料含量在基体中从 2 到 12(wt.%)不等。测量了 AA 7075 金属基复合材料的机械和微观结构特性,并与基材进行了比较。结果表明,复合材料的机械强度和硬度有所提高。在增强颗粒浓度较高的情况下,冲击能量也显著提高。复合材料的冲击能量在 9% 和 12% 时增加到 3 J,12% 焊渣 MMC 获得的最大抗拉强度为 173 MPa。12% 焊渣 MMC 获得的最高硬度为 98 BHN。此外,微观结构结果反映了搅拌铸造工艺的显著晶粒细化,基质中具有良好的界面特性,农用增强材料颗粒分散均匀。关键词:力学性能;工业废弃物;AA7075;农业废弃物;微观结构分析