我们介绍了一声开放的负担能力学习(OOAL),其中一个模型只有一个基本对象类别的一个示例训练,但有望识别新颖的观点和负担能力。虽然视觉语言模型在识别新颖的物体和场景方面表现出色,但它们通常会努力理解诸如亲戚之类的粒度水平。为了解决这个问题,我们对现有基础模型进行了全面分析,以探索他们对负担的理解并评估潜在的数据限制负担能力学习。然后,我们提出了一个视觉语言框架,并具有简单有效的范围,以增强视觉特征和负担能力文本嵌入之间的对齐方式。对两个负担能力分割基准的实验表明,所提出的方法优于最先进的模型,这些模型少于1%的完整培训数据,并且在看不见的物体和负担能力上表现出合理的概括能力。项目页面:https://reagan1311.github.io/ooal。
我们介绍了Physgaussian,这是一种新方法,将物理扎根的牛顿动力学无缝地集成在3D高斯人中,以实现高质量的新型运动合成。采用自定义材料方法(MPM),我们的方法丰富了3D高斯内核,具有物理意义的运动学变形和机械应力属性,所有这些都符合连续力学原理。我们方法的定义特征是物理模拟和vi-sual渲染之间的无缝集成:这两个组件都利用相同的3D gaus-sian内核作为离散表示。这否定了三角/四面体缝合,行进的立方体,“笼子网格”或任何其他几何嵌入的必要性,突出了“您所看到的就是您所见的原则(WS 2)。”我们的方法证明了各种材料(包括弹性实体,塑料金属,非牛顿液和颗粒状材料)的特殊效果,展示了其在创建具有新颖观点和运动的Di-Verse视觉内容方面的强大能力。我们的项目页面是:https://xpandora.github。io/ physgaussian/。
这本书是理论最低系列的第二卷。第一卷,理论的最低限度:开始做物理学,涵盖的古典力学,这是任何物理教育的核心。我们将不时将其简单地称为卷。第二本书解释了量子力学及其与古典力学的联系。本系列中的书籍与伦纳德·苏斯金德(Leonard Susskind)的视频平行,该视频可通过斯坦福大学(Stanford University)在网络上获得(www.theoricentimenminmumim.com有关清单)。同时与视频相同的一般主题时,这些书包含其他详细信息,以及视频中没有出现的主题。
联合药物疗法是成功治疗多种疾病的关键,在这些疾病中单一疗法效果不够好或出现了耐药性。因此,开发新的药物组合是主要关注点。固定剂量组合也是如此,近年来批准的固定剂量组合有所增加。开发固定剂量组合通常需要进行大规模析因设计研究以验证组合的疗效。随着对药物个性化的更多关注,需要为患者提供几种剂量水平的固定剂量组合。对于析因设计研究,这将导致非常昂贵的临床试验。为了降低开发成本并指导药物开发,必须验证现有工具并开发新工具。然而,用于分析固定剂量组合的此类基于模型的工具还处于起步阶段。
Results ......................................................................................................................................... 6
第二次量子革命不仅促进了量子科学和技术的研究,也促进了如何最好地教育可能进入这一新兴领域的学生的研究。关于量子科学教育的大部分讨论都集中在学生的概念学习或潜在雇主所期望的技能上;缺乏对实验课程和实验如何促进本科量子教育的研究。为了开始了解量子实验可能发挥的作用,我们对在本科实验课程中使用单光子和纠缠光子进行实验的教师进行了调查,发现最重要的学习目标之一是“在现实生活中看到量子力学”。为了更好地理解这一目标,我们采访了 15 位接受调查的教师,询问他们了解量子力学对他们意味着什么,以及他们为什么认为这是学生教育的重要组成部分。我们从对这些访谈的定性编码分析中提出了新主题,这些主题开始阐明教师如何看待了解量子力学,以及教师希望了解量子力学(以及更广泛地进行量子实验)将帮助学生实现哪些学习目标。
本书包含 300 多个量子力学问题及其解决方案,涵盖了研究生一年级物理课程中常见的主题。本书特别关注每个问题的表述,并提供详细而广泛的解决方案以帮助理解。这些问题涵盖了从基本练习到更具挑战性的应用和标准材料的扩展的一系列难度。学生需要批判性地思考,并结合以前或同时学习的物理和数学技巧来解决更具挑战性的问题。每章都以一个简短的理论部分开始,阐述正在研究的特定主题,为后续问题设定背景并激发其灵感。本书非常适合自学,或作为高年级本科生和研究生及其导师现有量子力学教科书的有益补充。
阅读时,我们的眼睛通过一系列注视和高速扫视浏览文本,以提取视觉信息。这一过程使大脑能够获得意义,例如关于书面文本中表达的情绪或情感价。大脑在自然阅读过程中如何提取单个单词的情感在很大程度上是未知的。这是由于自然成像的挑战,这导致研究人员之前采用高度控制、定时的逐字呈现缺乏生态效度的定制阅读材料。在这里,我们旨在评估自然阅读英语句子时词语情绪处理的电神经相关性。我们使用了一个公开的数据集,包括同步脑电图 (EEG)、眼动追踪记录和 400 个句子中的 7129 个单词的词级语义注释(苏黎世认知语言处理语料库;Hollenstein 等人,2018 年)。我们计算了注视相关电位 (FRP),即与注视开始时间锁定的诱发电反应。对从视觉和运动诱发活动中清除的 FRP 进行一般线性混合模型分析,结果显示,在注视开始后 224 – 304 毫秒间隔内,左中和右后电极簇中的积极和消极情绪条件之间存在地形差异。包括单词、短语和句子级情绪预测因子的额外分析显示,单词级情绪的 FRP 差异相同,但短语和句子级情绪没有额外的 FRP 差异。此外,从情绪匹配的 40 次试验平均 FRP 中对单词情绪(积极或消极)进行分类的解码分析显示平均准确率为 0.60(95% 置信区间:[0.58, 0.61])。控制分析排除了这些结果是基于眼球运动或语言特征的差异而不是词语情绪。我们的研究结果扩展了以前的研究,表明词汇语义刺激的情感价会在自然阅读过程中对单词注视产生快速的电神经反应。这些结果为在生态有效条件下识别词汇语义处理的神经过程提供了重要的一步,并可用于改进自然语言处理的计算机算法。
