表 1:PBSP 项目交付基础设施升级的绩效 表 2:PBSP 目标和相关成就 表 3:2012 年 F 因子计划下的网络火灾 表 4:PBSP 目标和相关主要措施及 KPI 表 5:与目标 1 相关的 KPI 结果 表 6:PBSP 的预算和时间表绩效(截至 2020 年 8 月) 表 7:安全设置和要求 表 8:重大森林火灾的一般影响 表 9:2009 年黑色星期六森林大火的实际成本估算 表 10:工作组提出的措施包 表 11:从研发基金获得资助的项目 表 12:网络资产项目的估计成本分摊 表 13:DB 和 HV 客户成本明细 表 14:PBSP 的 PRF 和项目管理组件的估计成本 表 15:电力线更换成本(客户的最终净成本) 表 16:每公里单位成本高压电线更换表 17:研发基金支出明细(包括 2020-21 年拟议支出)
安全部分概述了操作产品时必须遵守的安全说明。该产品根据当前有效的最新技术制造,操作可靠。它已经过检查,出厂时的安全状况完美无缺。为了在使用寿命期间保持这种状态,必须遵守并遵循有效出版物和证书中的说明。操作产品时必须遵守一般安全说明。除了一般安全说明外,在相应章节中还提供了带有精确安全说明的流程和操作程序描述。此外,当地的事故预防规定和设备操作条件的一般安全规定也有效。只有遵守所有安全说明,才能最大程度地保护人员和环境免受危害,并安全无故障地运行产品。
注 1. 电力线起火可能性降低是指与裸线架空电线相比,技术变化导致的起火可能性相对降低。注 2. 由于通货膨胀,2011 年的 1 美元价值略高于 2015 年的 1.08 美元。为了获得 2015 年的价值,将 2011 年的美元乘以 1.08175。请参阅 ABS,消费者价格指数(目录编号 6401.0),如财政部在 2017 年 12 月发布的“经济预测方法 - 一般方法”中提供的费率和平减指数电子表格中所示。注 3. CSIRO 估计,配备 REFCL 的裸线线路的风险降低了 49% 至 55%;后来的独立测试表明风险可能降低 70-75%。注 4. 在其 2011 年 9 月的最终报告中,工作组表示其预计的 REFCL 和 ACR 部署成本为 4.71 亿美元(2011 年)——REFCL 为 4.32 亿美元,ACR 为 3900 万美元。由于建议的工程复杂且前所未有,因此该数字存在 ± 20% 的差异。DELWP 在其表格中使用了该差异的上限(5.184 亿美元,2011 年)。注 5. 这是 AER 批准的 AusNet 和 Powercor 的第 1 和第 2 阶段 REFCL 工程总和(4.36 亿美元,2015 年)加上其拟议的第 3 阶段工程总和(2.73 亿美元,2015 年),减去 10%。10% 的减幅假设 AER 批准的第 1 和第 2 阶段的资金与公司的资金申请相比减少大致相同。注 6. 此条目包括当前预计支出,须经 AER 审查,并且可能会进行修订。
用作 VPL 时,公用事业规模的电池存储提供了一种增加电网容量的技术替代方案,同时还提高了系统的可靠性和安全性。使用 VPL 的目的是使额外的电力容量比传统的基础设施加固或扩建更快、在某些情况下成本更低。当网络拥塞在特定的罕见事件(例如夏季的极高温度)期间发生时,以及当昂贵的网络容量升级未得到充分利用时,VPL 提供了一种特别经济有效的解决方案。此外,如果法规允许,ESS 还可以通过提供频率调节、电压支持和旋转备用等辅助服务来支持系统。
集成 Sharper Analyzer 软件。LiDAR 点云数据自动处理,识别和地理定位输配电资产。该软件通过算法检测和分类整个检查区域的植被问题。
摘要 飞机布线对整个飞机的重量和复杂性有很大影响。需要一种方法来减少飞机的总体布线量。为了实现这一目标,一个创新的解决方案是使用电力线通信 (PLC) 技术作为数据总线。卢塞恩应用科学与艺术大学 (HSLU) 开发了一种专用于航空应用的 PLC 技术,可提供高可靠性、低延迟和确定性行为。HSLU PLC 解决方案 (电力线数据总线 - PLUS) 不仅针对能够满足必要功能和性能要求的通信协议,而且还提供设计保证。Diehl Aerospace、PLUS 技术提供商 plc-tec AG 和研究合作伙伴 HSLU 正在合作,将过去 12 年累积的 PLC 研发成果应用于基于 PLUS 的 PLC 飞机系统的开发。本文将描述在飞机中使用 PLC 技术所面临的挑战,概述 PLUS 技术并展示 PLUS 如何克服这些挑战。本文还概述了来自不同研发项目和飞机应用的先前验证和确认测试。
摘要 飞机布线对整个飞机的重量和复杂性有很大影响。需要一种方法来减少飞机的总体布线量。为了实现这一目标,一个创新的解决方案是使用电力线通信 (PLC) 技术作为数据总线。卢塞恩应用科学与艺术大学 (HSLU) 开发了一种专用于航空应用的 PLC 技术,可提供高可靠性、低延迟和确定性行为。HSLU PLC 解决方案 (电力线数据总线 - PLUS) 不仅针对能够满足必要功能和性能要求的通信协议,而且还提供设计保证。Diehl Aerospace、PLUS 技术提供商 plc-tec AG 和研究合作伙伴 HSLU 正在合作,将过去 12 年累积的 PLC 研发成果应用于基于 PLUS 的 PLC 飞机系统的开发。本文将描述在飞机中使用 PLC 技术所面临的挑战,概述 PLUS 技术并展示 PLUS 如何克服这些挑战。本文还概述了来自不同研发项目和飞机应用的先前验证和确认测试。
摘要 激光扫描是获取地形及其上物体的高精度最新空间数据的方法之一。激光雷达 (LIDAR) 是最现代、发展最快的技术之一,它揭示了迄今为止传统方式无法实现的测量新功能。本文旨在展示使用机载激光扫描数据进行能源网络测量和可视化的可能性,以及使用 TerraSolid 软件包识别现有网络对周围环境构成的危险。根据从机载激光扫描中获得的两种不同点云,对电力线的两个独立部分进行了测量。第一个点云的密度为 16 点/平方米,另一个点云的密度为 22 点/平方米。该项目是在 MicroStation V8i 软件环境中创建的,使用特殊叠加层——芬兰 TerraSolid 公司的 TerraScan 和 TerraModeler。使用不同密度的测试云旨在指示点云的最佳密度,从而允许基于机载激光扫描数据对能源网络进行调查和可视化。该出版物通过特定示例介绍了电力线矢量化和可视化的过程以及在危险距离内检测物体的过程。还证实了使用满足行业要求的应用激光雷达数据进行电力线调查的可能性。
1 土耳其埃斯基谢希尔安纳多鲁大学电气电子工程系 omeremreyetgin@anadolu.edu.tr 2 土耳其安卡拉加齐大学电气电子工程系 zsenturk@gazi.edu.tr 3 土耳其埃斯基谢希尔安纳多鲁大学电气电子工程系 ongerek@anadolu.edu.tr 摘要 电力线是飞机飞行安全的重要保障。基于数码相机的方法将这些电力线视为数字线和边缘,需要使用线和边缘检测器进行检测。EDLines、LSD 和 Hough 变换是文献中已知的最佳线路检测方法。在本研究中,为了确定飞机安全的电力线,考虑了 EDLines、LSD 和 Hough 变换方法。本文首先简要介绍这些方法,然后继续分析它们的性能。最后讨论了结果。观察发现,在三种方法中,EDLines 方法的准确度更高。此外,它能更快地产生结果。因此,EDLines 方法有望广泛应用于飞机安全应用。 1. 简介 直升机在城市作业中的使用有所增加,例如搜索和救援行动、消防、军事需要等。直升机的着陆和近距离接近能力是其普遍使用的主要原因。因此,研究人员的关注度日益增加 [1,2,3]。
摘要:高压电线可以很容易地利用激光扫描数据进行测绘,因为高压线附近的植被通常会被移除,而且与区域网络和低压网络相比,高压电线位于地面上方。相反,低压电线位于茂密的森林中间,在这样的环境中很难对电线进行分类。本文提出了一种用于森林环境的自动电力线检测方法。我们的方法是基于统计分析和二维图像处理技术开发的。在统计分析过程中,应用一组标准(例如高度标准、密度标准和直方图阈值)来选择电力线候选点。将候选点转换为二值图像后,采用基于图像的处理技术。对象几何特性被视为电力线检测的标准。该方法在来自不同森林环境的六组机载激光扫描 (ALS) 数据中进行。与参考数据相比,93.26% 的电力线点被正确分类。分析并讨论了这些方法的优缺点。
