供应链干扰可能会导致生产成本大幅上升。为了减轻这些风险,企业可能会采取措施减少其对波动供应商的依赖。我们构建了内源网络形成的模型,以研究这些决策如何影响生产网络的结构以及宏观经济骨料的水平和波动性。当模型的不确定性增加时,生产商更喜欢从更稳定的供应商那里购买,即使他们可能以较高的价格出售。由此产生的网络重组倾向于降低宏观经济的波动率,但造成总产出的成本下降。该模型还预测,在均衡网络中,更易加力和稳定的公司具有更高的Domar权重,这是其作为供应商的重要性的衡量标准。我们使用美国数据对模型进行了基本校准,以评估这些机制的重要性。
飞机的主要动力是燃气涡轮发动机。这些发动机有多种形式,其中四种被认为是目前使用的主要发动机。这些发动机是涡轮喷气发动机、加力涡轮喷气发动机、涡轮风扇发动机和涡轮螺旋桨发动机。燃气涡轮机是从燃烧气体流中提取能量的旋转发动机。它们有一个上游压缩机,与下游涡轮机相连,中间有一个燃烧室。在飞机发动机中,这三个核心部件通常被称为“燃气发生器”。当涡轮喷气发动机推动的飞机速度接近废气速度时,涡轮喷气发动机效率最高。在许多情况下,飞机的设计速度比典型的喷气排气速度慢得多,因此发动机涡轮也用于驱动其他部件。这样,涡轮螺旋桨发动机、涡轮风扇发动机和涡轮轴发动机就针对它们驱动的飞机的速度和类型进行了优化。4. 很少有主要的飞机发动机制造商在市场上占据主导地位
摘要 内质网 (ER) 驻留蛋白 TANGO1 在 ER 出口位点 (ERES) 周围组装成一个环,并将 ER 腔内的前胶原与细胞质中的 COPII 机制、系绳和 ER-Golgi 中间区室 (ERGIC) 连接起来 (Raote 等人,2018)。在这里,我们提出了一种理论方法来研究 TANGO1 环组装的物理机制以及 COPII 聚合、膜张力和力如何促进前胶原输出的运输中间体的形成。我们的结果表明,TANGO1 环通过充当 linactant 来稳定新生 COPII 芽的开放颈部。然后通过两种互补机制促进这种芽伸长成与大块前胶原相称的运输中间体:(i) 通过缓解膜张力,可能是通过 TANGO1 介导的逆向 ERGIC 膜融合和 (ii) 通过施加力。总之,我们的理论方法确定了 TANGO1 驱动的前胶原输出中的关键生物物理事件。
我是软材料的理论和计算研究专家。软材料被归类为施加力时容易变形的材料。示例包括生物种子,聚合物,胶体,液体和纳米材料。My research encompasses a wide range of topics, including biomolecules, proteins, lipid membranes, viruses such as SARS- CoV-2 and bacteriophages, polymers, metal-polymer complexes, polymer brushes, polysaccharides, polyelectrolyte membranes, colloidal systems, surfactants, shock waves, energy adsorption systems, chromatographic separation, and electron束光刻。我精通几种计算科学软件包,科学编程和源代码修改。我有教授物理学和计算方法的经验。我已经与来自印度,加拿大,美国,非洲,俄罗斯和中国在内的全球专家研究人员和学生合作。我已经成功地获得了资助机构的研究赠款,例如国家科学基金会,新泽西州临床和转化医学联盟(NJACTS),并与杜邦和高尔盖特 - 帕尔莫利维(Colgate-Palmolive)等行业合作伙伴合作。
电动力学(ED)系绳是从航天器延长的冗长电线。它具有强大的潜力,可以在低地球轨道上提供推进剂较少推进。该系链使用与玩具,电器和计算机磁盘驱动器中的电动机相同的原理。它是推进器,因为磁场会在电流携带的电线上施加力。地球提供磁场。可以通过正确控制该“电动力”线产生的力,以使用拉或推动航天器作为制动器或助推器。NASA计划通过系绳从地球大气中脱离能量,作为家庭首次演示无推进剂太空推进系统的首次演示,可能导致革命性的太空运输系统。与地球磁场合作将使包括国际空间站在内的众多航天器受益。系绳推进不需要燃料。完全可以重复使用,并且在环境上清洁,并以低成本提供所有这些功能。
拉动开放式橱柜和抽屉在感知中提出了许多困难的技术挑战(从车载传感器中推断物体的发电参数),计划(制定符合紧密任务约束的运动计划)和控制(在环境上施加力时进行控制和维护接触))。在这项工作中,我们构建了一个端到端系统,该系统使商品机械手操纵器(Stretch Re2)能够在以前看不见的现实世界环境中拉出开放式橱柜和抽屉。我们对该系统进行了4天的现实世界测试,这些系统涵盖了来自13个不同现实世界环境的31种不同对象。我们的系统在未看到的环境中开放新颖的机柜和抽屉的成功率为61%。对故障模式的分析表明,感知错误是我们系统最重大的挑战。我们将开放源代码和模型,供其他人复制并在我们的系统上构建。
𝑐或(2)=𝑝𝑐上述方程的许多派生来自爱因斯坦的质量能量方程,导致圆形依赖性,这使得派生无效。相反,对光动量和压力的存在的识别和理论证实早于质量能量方程的发表,并以经验观察为基础。材料实体由带电的颗粒组成,当电磁波(包括可见的灯,入射在这种物体上)时,它们会根据Lorentz力在带电的颗粒上施加力。然后通过这些力传输电磁波的能量和动量,这些力在颗粒上发挥作用,从而增加了它们的能量。这构成了电磁波中动量和能量之间关系的基础。这是使用洛伦兹力的简化形式的方程(1)推导。另一方面,动量(p)定义为(3)𝑝=𝑚𝑣,其中m是实体的质量,v是其速度。在光子的情况下以光速(c)行驶,可以将定义重写为
手指压力为触摸交互提供了一个新的维度,其中输入由其空间位置和正交力定义。然而,移动设备中集成力传感硬件的有限可用性和复杂性成为探索这一设计空间的障碍。本文介绍了近期移动设备中的两项功能的综合——气压传感器(压力高度计)和入口保护——以感测用户的触摸力。当用户对设备的显示屏施加力时,显示屏会向内弯曲并导致密封底盘内的气压升高。设备的内部气压计可以感测到这种压力的增加。然而,这种变化是不受控制的,需要校准模型将气压映射到触摸力。本文推导出这样的模型,并在四种商用设备(其中两种带有专用力传感器)上证明了其可行性。结果表明,该方法对小于 1 N 的力很敏感,并且可与专用力传感器相媲美。
手指压力为触摸交互提供了一个新的维度,其中输入由其空间位置和正交力定义。然而,移动设备中集成力传感硬件的可用性有限且复杂性成为探索这一设计空间的障碍。本文介绍了近期移动设备中的两个功能——气压传感器(压力高度计)和入口保护——的综合,以感测用户的触摸力。当用户对设备的显示屏施加力时,它会向内弯曲并导致密封底盘内的气压增加。设备的内部气压计可以感知到这种压力的增加。然而,这种变化是不受控制的,需要校准模型将气压映射到触摸力。本文推导出这样一个模型,并在四种商用设备(其中两种带有专用力传感器)上证明了其可行性。结果表明,该方法对小于 1 N 的力很敏感,并且与专用力传感器相当。