人口老龄化背景下老年人口数量的快速增加,逐渐改变了社会的疾病谱,老年疾病发病率上升,也增加了老年人对医疗保健服务、医疗卫生服务和健康保险的需求,最终导致家庭和社会在养老方面的支出增加。本研究旨在评估这些支出负担对经济可持续发展的影响,并寻找一些切实有效的解决方案。本文首先构建理论模型来阐述老年抚养比与资本边际产量(MPK)之间的关系,然后基于1981—2017年81个国家的跨国面板数据建立双向固定效应模型对这种关系进行实证验证。本文发现,在控制了一系列变量之后,老年抚养负担的增加导致作为关键宏观经济变量和可持续发展标准的MPK下降,但医疗卫生、健康保障体系和技术创新在其中起着关键的调节作用。在使用两阶段最小二乘法(TSLS)和广义矩估计法(GMM)等不同方法处理内生性问题后,该结论仍然成立。总体来看,在人口老龄化到来之前,老而不富的国家应该鼓励更多的公共卫生体系供给侧投资或技术创新,调整退休制度,或逐步鼓励生育,为后期公共卫生体系和经济的可持续发展争取时间和空间。
使用人工智能和机器学习进行服务建模和绩效管理 Sumanth Tatineni 摘要:在不断变化的现代商业环境中,有效的绩效管理仍然是组织成功的重要一步。研究人工智能和机器学习的变革性影响至关重要,它们重塑了服务计算中的传统建模方法和绩效管理实践。这是本文的目标。此外,本文还探讨了人工智能和机器学习促进的从静态到动态服务模型的转变,强调服务交付带来的增强的适应性和敏捷性。本文重新定义了使员工与组织目标保持一致并优化其绩效的传统方法。传统上,绩效管理侧重于使员工与公司目标保持一致。然而,人工智能技术带来了转变,使组织能够利用大量数据集来提高绩效、数据驱动的决策并促进员工发展。在数据驱动的洞察力很重要的时候,人工智能可以处理大量数据,这是绩效管理的一个关键方面。集成人工智能可促进绩效管理流程,从而提高准确性、客观性和效率,并提供一系列通过传统方法可能无法实现的趋势和模式。另一方面,传统方法(例如人工智能驱动的流程)促进了持续的数据评估和收集,从而确保了实时反馈并通过个性化的培训建议支持员工成长。本文全面探讨了人工智能和机器学习在塑造服务建模和绩效管理实践中的作用,从而为组织提供了充分利用这些技术在服务计算方面的潜力的路线图。关键词:服务建模、绩效管理、服务计算中的人工智能、预测分析、数据驱动的洞察、机器学习应用、自动化服务优化 1. 简介 人工智能和机器学习模型的成功与数据质量息息相关。当考虑到这些模型的次优性能时,这种联系的重要性变得更加重要。劳动力绩效与整体成功之间的相关性强调了对服务计算有效绩效管理的必要性 [1]。员工活动和动机与战略的无缝结合对于组织的发展至关重要。管理方法的演变凸显了对优化个人和团队绩效的持续关注。人工智能正在利用基于云的人工智能服务来重塑不同的行业和业务运营,为从事服务计算的企业挖掘机遇。结合可扩展、高效且经济高效的基于云的人工智能服务 [2],该模型无缝地实现了服务计算中的有效性能管理。它结合了推进人工智能应用的关键方面,例如数据收集和处理,从而导致了机器学习模型的创建。这些模型和高级算法对于优化服务计算方面的服务建模和性能管理非常重要。此外,人工智能服务结合了自然语言处理 (NLP)、计算机视觉和语音识别,从而弥合了人类语言理解和视觉数据解释之间的差距。模型。本文深入探讨了人工智能和机器学习如何优化服务计算中的服务建模和性能管理。它描述了这些技术如何重塑已知的传统方法,从而为服务交付带来适应性、效率和敏捷性,以帮助
谁可以在投票站投票?................................... 10 投票站开放时间 .............................................. 12 查找投票站的位置 .............................................. 13 投票代理人做什么?......................................... 13 保持选票的保密性 .............................................. 13 正常的投票流程是什么?.............................................. 14 从投票站收集邮寄选票 ........................................ 16 计票员 ...................................................................... 16 投票结束后会发生什么?......................................... 16 计票 ...................................................................... 16
航天国家对外太空探索活动的增加导致地球轨道上和重新进入大气层的太空垃圾不断增加。现行的责任制度是 20 世纪 60 年代和 70 年代美苏太空竞赛的结果,它无法减轻和阻止这种扩散。如果不采取主动措施,太空垃圾的堆积可能会升级为凯斯勒综合症,这是一种设想中的情景,即由于高冲击力太空物体碰撞的极端风险,太空探索及其相应的好处可能会变得不可行。本评论首先分析了现有的修改外层空间条约责任制度的提案。接下来,为了论证航天国家有清除源自其卫星和太空物体的太空垃圾的积极责任,本评论应用了三项具有里程碑意义的习惯国际法原则:污染者付费原则、预防原则和禁止跨界损害。最后,本评论提出了一个新颖的解决方案,即建立一个安全保证金计划,参与太空活动的国家必须缴纳保证金才能将物体和卫星发射到外层空间,这一计划效仿了现有的国际环境法解决海洋垃圾问题的努力。重点是采取预防措施减少外层空间产生的空间垃圾数量,这是确保太空作为航天国家共享资源继续使用的最有效的解决方案。
呼吸短促、咳嗽并伴有白痰 2 天。患者的儿子一直在监测她的氧气状况,结果显示她的血氧饱和度 (SpO2) 从基线的 95% 下降到 88%,这促使他带她去了急诊室。到达时,患者的 SpO2 为 82%,心率为每分钟 101 次。值得注意的是,她没有发热,体温为 36.6 摄氏度。体检时发现患者喘息且呼吸困难。她有 COPD 病史,使用 Symbicort(一种吸入性皮质类固醇)、Spiriva(一种吸入性毒蕈碱拮抗剂)和沙丁胺醇治疗,并且她没有使用任何家庭氧气。她的其他既往病史包括口服直接抗凝剂后阵发性心房颤动、高血压、高脂血症和阻塞性睡眠呼吸暂停。当被问及时,患者否认有任何发烧、发冷、恶心、呕吐、腹泻或喉咙痛。她还否认最近接触或接触过 COVID-19 患者。她说她不吸烟,家里也没有人吸烟,她
事实说明:新《CHIPS法案》包括对研发的重大投资和保护 事实:新《CHIPS法案》将增加重要的研究安全护栏,以保护美国知识产权。参议员们推进了《美国创新与竞争法案》(USICA),以阻止中国肆无忌惮地窃取美国知识产权和联邦资助研究的成果。除USICA的其他条款外,新的两党“2022年CHIPS法案”将: 赋予NSF研究安全权力——要求NSF维持一个研究安全和政策办公室,以识别潜在的安全风险。 对研究人员进行最佳实践培训,禁止联邦雇员和大学研究人员参与所谓的恶意外国人才招聘计划——要求寻求联邦研究机构资助的受保个人完成年度研究安全培训。 创建一个研究安全和诚信信息共享组织,作为机构和研究人员识别危害研究安全的不当和非法行为的信息交换所。 确保透明度——要求申请国家科学基金会资金的大学披露来自中国和其他“令人担忧的外国”的协议和礼物。还禁止国家科学基金会的资金流向设有孔子学院的大学。事实:新的 CHIPS 法案将减少研究资金分配的历史性差距,确保更多大学能够参与美国超越中国的努力。USICA 的一个关键组成部分是它对国家科学基金会向大学和研究机构分配联邦研发 (R&D) 资金的方式进行了历史性改变。为了超越中国,美国需要利用美国各地的行业和大学的人才、能力和专业知识,而不仅仅是少数沿海高科技中心。例如,2021 年,超过一半的国家科学基金会资金流向了七个州和华盛顿特区。一半的资金流向了华盛顿特区。
新加坡建设:从贫民窟到可持续的建筑环境 从一个挤满非法居住者的乡村小镇到拥有世界一流城市基础设施的现代化大都市,新加坡在过去五十年中经历了巨大的转变。建国初期,我们主要致力于在资源不足的情况下解决紧迫的住房短缺问题。20世纪70年代末到80年代初,新加坡进入了建筑活动密集、规模和复杂性不断增加的时代,优先考虑事项开始转向机械化和节省劳动力。随后,随着这个城市国家的进一步繁荣,我们更加重视确保建筑环境的可持续性和包容性。本研究回顾了新加坡建筑业的发展历程,记录了其间优先事项的演变,并分析了建筑环境如何在需求和挑战迅速变化的现代化城市国家的建设中发挥了关键作用。
v 无法达到峰值流量,或 v 峰值流量为 _______ 或更低,或 v 即使服用了快速缓解药,哮鸣声仍然加剧,或 v 即使服用了快速缓解药,呼吸仍然加快,或 v 行走或说话困难,或 v 呼吸困难并且还出现以下症状:w 鼻孔张开,或 w 皮肤苍白或嘴唇周围呈蓝灰色,或 w 皮肤冰冷、出汗,或 w 咳嗽增多,影响呼吸,或 w 呼吸急促,或 w 咕噜声,或 w 颈部和肋骨肌肉露出,或 w 腹部肌肉紧张。
表格和图表 表 1.1 一些主要海底噪声源的比较 3 表 1.2 声音对海洋环境的潜在影响 7 表 1.3 与海军或地震活动同时发生的大规模搁浅 8 表 2.1 海洋噪声缓解措施 19 表 2.2 北约成员国使用或开发的主动声纳系统 22 表 2.3 2002 年 1 月至 2005 年 2 月世界各地的地震勘探 31 表 4.1 与海洋噪声相关的国际公约、协定和条约 56 图 2.1 美国海岸外的海军综合设施 27 图 2.2 全球海上地震勘探热点(2002 年 1 月至 2005 年 2 月) 29 图 2.3 墨西哥湾未来地震勘测预测 32 图 2.4美国墨西哥湾地震勘测区域按船员数量划分(2002 年 1 月 - 2005 年 2 月) 33 图 2.5 欧洲地震勘测区域按船员数量划分(2002 年 1 月 - 2005 年 2 月) 34 图 2.6 北美水域国际航道 37
