心肌纤维大致可分为三大功能类别:起搏器,通过自发产生动作电位来启动心跳;传导纤维,将动作电位有序地传播到整个心脏,以确保高效泵血;心肌纤维(大多数纤维),产生将血液泵送到全身所需的力量。一些传导纤维也能够自发产生动作电位,尽管它们在正常情况下不会这样做。产力纤维(心肌纤维)通常不能自发产生动作电位,但在异常情况下(例如缺血一段时间后),它们可能会获得这种特性并导致心律失常等问题。心脏中两组主要的起搏细胞位于窦房结 (SA) 和房室结 (AV) 中(图 1)。通常,窦房结的起搏细胞占主导地位,心脏的速率和节律由窦房结决定。然而,如果窦房结 (SA) 衰竭,或心房和心室之间的电传导受阻,房室结起搏细胞就会接管控制并起搏心脏。如果房室结衰竭,其他较低级别的起搏细胞可以承担心跳生成的角色,尽管心跳的传播可能严重异常。在人体心脏中,窦房结位于上腔静脉与右心房交汇处的沟内(图 2)。窦房结包含两种组织学上不同的纤维类型:
电图尖峰振幅 - 反映传播动作电位上冲线的繁殖动作电位上冲线幅度明显小得多。房间协议之间的分化之间也存在显着差异。三种心房方案产生的单层具有尖峰幅度,聚集在<1 mV&1-5 mV范围内,但只有心房(D1RA)方法产生的尖峰幅度超过8 mV(图2e)。在心房单层中,尖峰幅度幅度与校正时或校正的FPD值之间没有相关性。产生心房(D1RA)最高尖峰幅度的区别在<0.6秒<0.6秒且校正的FPD值<150 ms,表明有可能产生上层心房样
摘要。标准的微电极技术用于评估急性缺氧对新生儿和成人腹膜心肌的细胞电活活性的影响。控制作用的成人和新生组织的潜在参数没有显着差异。三十分钟的急性低氧超灌注显着(p <0.05)降低了所有成人动作潜力指数。在新生儿制剂中,仅在50%复极(-17%)时仅动作电位持续时间,而在90%复极(-12%)下的动作势持续时间显着降低。缺氧60分钟后,动作电位幅度,最大舒张压和0阶段的新生儿上风速度仍未显着降低。尽管缺氧,但通过1小时的低氧超灌注(5.5 mM葡萄糖)诱导的新生儿作用电位参数的改变,尽管持续缺氧,但均被16.5 mM葡萄糖逆转。排除在低氧超舒适酸盐中的葡萄糖并不严重影响新生组织对缺氧的反应。在成人作用电位中,与正常(5.5 mm)葡萄糖的低氧溶液相比,每个动作电位参数的降低程度明显更大。在使用0 mM葡萄糖的新生儿制剂中缺氧超级灌注后,具有16.5 mm葡萄糖的氧合作用,导致动作电位参数超过了控制值4至25%。我们的数据表明,心肌对缺氧对细胞电活活性的有害影响具有更大的抵抗力。与成人心脏相比,这似乎与新生儿心肌的糖酵解活性更大有关。(Pediatr Res 19:1263-1267,1985)
化学类别 美西律是一种非选择性电压门控钠通道阻滞剂,属于 IB 类抗心律失常药物。它是一种芳香醚和一级氨基化合物。 作用方式概述 美西律是一种局部麻醉剂、抗心律失常剂,结构类似于利多卡因。美西律可有效抑制诱发的室性心律失常。美西律与利多卡因一样,可抑制内向钠电流,从而降低动作电位 0 期上升率。美西律缩短浦肯野纤维中的有效不应期 (ERP)。ERP 的减少幅度小于动作电位持续时间 (APD) 的减少幅度,从而导致 ERP/APD 比率增加。 关于其成分的重要信息 化学活性物质 产品信息超链接
通讯作者:Deborah K. Lieu,博士,加利福尼亚大学戴维斯分校,内科系,心血管医学科,再生疗法研究所 1616,2921 Stockton Blvd.,萨克拉门托,CA 95817,电话:916-734-0683,dklieu@ucdavis.edu。作者贡献 Sun:构思和设计,数据收集和汇编,数据分析和解释,手稿撰写 Kao:数据收集 Chang:数据收集 Merleev:软件开发和数据分析 Overton:数据收集 Pretto:数据收集 Yechikov:软件开发,数据分析和解释 Maverakis:软件开发和数据分析 Chiamvimonvat:数据分析和解释,手稿最终审定 Chan:提供仪器,手稿最终审定 Lieu:构思和设计,资金支持,数据分析和解释,手稿撰写,手稿最终审定
光遗传学工具箱中的一种众所周知的现象是,所有光门控离子通道(包括红移的通道旋转蛋白(CHRS))都被蓝光激活,而蓝移Chrs对更长的波长的响应最小。在这里,我们利用此功能创建了一个系统,该系统允许具有红光脉冲的神经元高频激活,同时允许通过Blue Light的毫秒精度抑制动作电位。我们通过将超快速的红色CHR与适当匹配的动力学匹配的蓝色光敏感阴离子通道配对来实现这一目标。这需要筛选几个阴离子选择性CHRS,然后进行基于模型的诱变策略,以优化其动力学和光谱。海马中的切片电生理学以及对颤音运动的行为检查表明,蓝光的激发最少。允许对具有红光的神经元进行高频光学遗传激发,而蓝光抑制动作电位在光脉冲的持续时间内被罚款。
反向传播这一术语源自一篇题为“通过反向传播误差学习表征”的原始文章(Rumelhart 等人,1986 年)。这是一种机器学习算法,可调整神经网络中连接的权重,以最小化网络实际输出向量与期望输出向量之间的差异(误差)的度量。在神经科学中,术语“反向传播”是指在轴突小丘区域产生的动作电位向后传播到该神经元的输入端(突触后末端或树突棘)。还观察到,循环侧支将神经元的输出带到其输入区域。这并不一定会导致误差校正;相反,它会加强特定神经元的激发。此外,突触连接不允许动作电位从突触后末端(输入区域)跨越到突触前末端(带来传入信号的神经元的输出区域)
总和包括空间和时间求和,是确定兴奋性和抑制性信号的组合效应是否会从多个同时输入(空间求和)和重复输入(时间求和)(时间求发)触发的过程。取决于许多单独输入的总和,总和可能会或可能不会达到阈值电压以触发动作电位
背景和目标:基因表达,形态和电生理组合对于评估人类诱导的多能干细胞衍生的心房和心室样性心肌细胞(IPS-AM和IPS-AM和IPS-VM)的动态发展至关重要。方法:对于IPS-AM/VM分化,我们对视黄酸和骨形态发生蛋白信号通路进行了基于小分子的时间调节。我们使用免疫荧光,实时聚合酶链反应,流式细胞仪和透射电子显微镜以及注册的电生理逻辑函数在第20、30天和60天后进行了注册的电生理逻辑函数研究了基因表达和形态。结果:泛胞肌细胞标记物,包括肌钙蛋白T2(TNNT2)和α-Actinin-2(ACTN2),在IPS-AMS和IPS-VMS中的表达都在增加。Similarly, the mRNA expression of both iPS-AM-specific markers, ie, natriuretic peptide A ( NPPA ), myosin light chain 7 ( MYL7 ), and K+ channel Kir3.4 ( KCNJ5 ), and iPS-VM-specific markers, ie, gap junction α-1 ( GJA1 ), myosin light chain 2 ( MYL2 ), and电压依赖性L型钙通道(CACNA1C)的α-1亚基从0增加到20天,然后从30天减少到60天。关于形态学,心脏肌钙蛋白-T(CTNT)的排列逐渐组织起来,并从IPS-AMS和IPS-VMS中的有组织的肌动物模式逐渐组织起来。线粒体数逐渐增加,而在动态发育过程中,脂质液滴的数量也降低。关于生理功能,在两种细胞类型中,静息和动作电位幅度在统计上保持统计漠不关,并且在发育过程中延长了动作电位持续时间。结论:IPS-AMS/VM显示了有关其基因表达,形态和电生理功能的动态发展。这项研究的发现可以为心脏发展提供新的见解,并鼓励进一步的研究。关键字:心肌细胞,诱导多能干细胞,动态发育,基因表达,形态,动作电位
图 1a 显示了不同形式的神经刺激通常如何用于激活或抑制神经信号(动作电位)。动作电位是细胞膜的去极化,钾和钠等离子通过离子通道穿过细胞膜,从而产生级联效应。激活和抑制都有重要的临床用途:激活可用于恢复因创伤或帕金森病等退行性神经疾病而受损的神经系统部分功能,而抑制功能可以抑制癫痫发作期间大脑的功能障碍区域等。这种控制只是假设的理想设备的众多参数之一,如图 1b 所示。它将是低功耗的,以防止设备发热并延长电池寿命(或理想情况下是无线供电,但保持足够高且可控的功率水平是一项挑战 [9] ),谨慎、无创且兼容磁共振成像 (MRI),[10] 精确,但可远距离控制。它不会通过加热、光化学损伤或电荷积聚来损害组织。它将具有神经元选择性,并且具有易于维持的效果,但也可能