设备,采用非平衡分子动力学方法来研究工作温度,界面大小,缺陷密度和缺陷类型对氮化碳/石墨烯/钻石异种结构的界面导热率的影响。此外,计算各种条件下的声子状态密度和声子参与率,以分析界面热传导机制。结果表明,界面热电导随温度升高而增加,突出了异质性固有的自我调节热量耗散能力。随着温度从100升的增加,单层石墨烯结构的界面热电导增加了2.1倍。这归因于随着温度升高的重叠因子的增加,从而增强了界面之间的声子耦合,从而导致界面导热率增加。此外,在研究中发现,增加氮化岩和石墨烯的层数会导致界面热电导量减少。当氮化壳层的数量从10增加到26时,界面的导热率降低了75%。随着层数增加而减小的重叠因子归因于接口之间的声子振动的匹配减少,从而导致较低的热传递效率。同样,当石墨烯层的数量从1增加到5时,界面热电导率降低了74%。石墨烯层的增加导致低频声子减少,从而降低了界面的导热率。此外,多层石墨烯可增强声子定位,加剧了界面导热的降低。发现引入四种类型的空缺缺陷会影响界面的导电电导。钻石碳原子缺陷导致其界面导热率增加,而镀凝剂,氮和石墨烯碳原子的缺陷导致其界面导热降低。随着缺陷浓度从0增加到10%,由于缺陷散射,钻石碳原子缺陷增加了界面热电导率,增加了40%,这增加了低频声子模式的数量,并扩大了界面热传递的通道,从而提高了界面热电导率。石墨烯中的缺陷加强了石墨烯声子定位的程度,因此导致界面导热率降低。胆汁和氮缺陷都加强了氮化炮的声子定位,阻碍了声子传输通道。此外,与氮缺陷相比,甘露缺陷会引起更严重的声子定位,因此导致界面的界面热电导率较低。这项研究提供了制造高度可靠的氮化炮设备以及广泛使用氮化壳异质结构的参考。
▶ 所有(非相对论、非引力)物理学的形式 ▶ 非自治 ▶ ψ 线性 ▶ 哈密顿量强非线性(即使在自治情况下) ▶ 保持质量、能量 ▶ 可能非常高维 ▶ 结构非常丰富
机器学习的核心元素是灵活的通用函数逼近器,可以对其进行训练并适应数据。现代机器学习的主要挑战之一是理解非线性和复杂性在这些通用函数逼近器中的作用。在本研究中,我们专注于非线性复杂系统,并展示它们在表示和学习不同函数方面的能力。复杂的非线性动力学和混沌自然会产生几乎无限多样的动态行为和功能。物理、生物和工程系统可以利用这种多样性来实现自适应、鲁棒的行为和操作。非线性动态系统可以被视为不同可能行为或功能的集合的体现,从中可以选择不同的行为或功能来响应不同的条件或问题。这个选择过程可以是手动的,即可以通过直接设置参数手动挑选正确的功能。或者,我们可以自动化这个过程,让系统本身学习如何去做。这创建了一种机器学习方法,其中非线性动力学表示并体现不同的可能功能,并且它通过训练学习如何从这个功能空间中选择正确的功能。我们报告了如何利用非线性动力学和混沌来设计和制造基于非线性动力学的可变形硅硬件,作为不同可能功能的物理体现。我们展示了这种灵活的可变形硬件如何通过学习和搜索算法(例如遗传算法)来学习以实现不同的所需功能。在这种方法中,我们将两种强大的自然和生物现象——达尔文进化论和非线性动力学与混沌结合起来,作为一种面向动力学的方法来设计具有应用的智能自适应系统。非线性动力学在硬件层面体现不同的功能,同时利用进化方法来找到实现正确功能的参数。
摘要 — 本研究描述了实验空气动力学研究中心 (CPAERO) 最近的活动,包括致力于发展用于解决基础和工业流动问题的实验和数值空气动力学和气动声学技术能力的所有努力。尽管巴西政府在过去十年中资源投入较少且机构政策出现分歧,但在过去的 05 年里,已经能够建造一个中型低速亚音速风洞,并购买、设计和建造各种用于实验室和露天研究的设备。主要活动是在航空、汽车和风能等替代能源领域开展的。但是,流体结构相互作用、无人机噪声以及风洞和风速传感器校准等领域的其他应用正在开发中。为了支持实验研究,特别关注计算空气动力学,通过使用开源代码来设计翼型、机翼和计算流体动力学 (CFD) 中更复杂的流体模拟。与当地和国家公司的接口正在不断增加,以及与其他大学和研究中心的研究合作伙伴。本文介绍了一些非常规飞机分析、商用车(如轿车和皮卡的空气动力学)、不同纵横比的圆柱体上的流动以及有限高度表面安装圆柱体的实验和数值数据的结果。提供了用于设计小型水平轴风力涡轮机 (HAWT) 仿生叶片的最新方法和新方法。还将气动声学数值数据与自由流和横流条件下亚音速喷气机的实验数据进行了比较,显示了 CPAERO 工具和能力的灵活性。
摘要 — 本研究描述了实验空气动力学研究中心 (CPAERO) 最近的活动,包括致力于发展用于解决基础和工业流动问题的实验和数值空气动力学和气动声学技术能力的所有努力。尽管巴西政府在过去十年中资源投入较少且机构政策出现分歧,但在过去的 5 年里,已经能够建造一个中型低速亚音速风洞,并购买、设计和建造各种用于实验室和露天研究的设备。主要活动是在航空、汽车和风能等替代能源领域开展的。但是,流体结构相互作用、无人机噪声以及风洞和风速传感器校准等领域的其他应用正在开发中。为了支持实验研究,特别关注计算空气动力学,通过使用开源代码来设计翼型、机翼和计算流体动力学 (CFD) 中更复杂的流体模拟。与本地和国家公司的接口正在不断增加,以及与其他大学和研究中心的研究合作伙伴。本文介绍了一些非常规飞机分析、商用车(如轿车和皮卡的空气动力学)、不同纵横比的圆柱体上的流动以及有限高度表面安装圆柱体的实验和数值数据的结果。提供了用于设计小型水平轴风力涡轮机 (HAWT) 仿生叶片的最新方法和新方法。还将气动声学数值数据与自由流和横流条件下亚音速喷气机的实验数据进行了比较,显示了 CPAERO 工具和能力的灵活性。
鉴于该过程的复杂调控以及观察干细胞小裂中细胞相互作用的困难,造血细胞(HSC)维持和分化以提供造血系统的研究和分化提供了独特的挑战。定量方法和工具已成为解决此问题的宝贵机制;但是,HSC的随机性在数学建模中提出了重大挑战,尤其是在弥合理论模型和实验验证之间的差距时。在这项工作中,我们为长期HSC(LT-HSC)和短期HSC(ST-HSC)(ST-HSC)建立了灵活且用户友好的随机动力学和空间模型,该模型可捕获实验观察到的细胞变异性和异质性。我们的模型实现了LT-HSC和ST-HSC的行为,并预测了它们的稳态动力学。此外,可以修改我们的模型以探索各种生物学情景,例如由凋亡介导的压力诱导的扰动,并成功地实施了这些疾病。最后,该模型结合了空间动力学,通过将布朗运动与空间分级参数相结合,在2D环境中模拟细胞行为。
图1:通过正交投影(绿色三角形)校正a)校正a)纠正预测,嘈杂和划分的浓度(蓝色三角形),b绿色三角形)b)在缩放模型的缩放范围的缩放范围的范围(缩放量表)中的缩放范围(缩放量表)的正交投影()缩放量表的标准循环范围()浓度空间和与来自A)的thogonal投影进行了比较。
例如,如果表达式 4.3.2-6 在文本的某处被引用,那么这种编号系统的优点是读者可以立即识别出公式在文本中的位置,在本例中是第 4 章第 3 节第 2 小节。在大多数情况下,读者只需查看内容就有机会识别所提到的方法,或者如果需要找到特定的部分,那么这种编号系统就具有优势。