摘要 性别决定是脊椎动物成功发育的关键要素,这表明性染色体系统可能在各个谱系中都具有进化稳定性。例如,哺乳动物和鸟类在漫长的进化时期内保持了保守的性染色体系统。相比之下,其他脊椎动物经历了频繁的性染色体转换,这更加令人惊奇,因为我们对它们各自的系统发育的大部分了解仍然很少。一种特殊的爬行动物群,壁虎蜥蜴(壁虎亚目),在性染色体转换方面表现出极高的不稳定性,并且可能拥有鳞目动物(蜥蜴和蛇)中的大多数转换。然而,大多数壁虎物种缺乏关于性染色体的详细基因组和细胞遗传学信息,这给我们对进化过程的理解留下了巨大的空白。为了解决这个问题,我们组装了壁虎(Sphaerodactylidae:Sphaerodactylus)的染色体水平基因组,并利用该组装数据在六个密切相关的物种中寻找性染色体,其中使用了各种基因组数据,包括全基因组重测序、RADseq 和 RNAseq。之前的研究已经在两种 Sphaerodactylus 壁虎中发现了 XY 系统。我们在那项工作的基础上扩展了该属中两到四个性染色体顺式转换(XY 到新的 XY)。有趣的是,我们确认了两种不同的连锁群为 XY 性染色体系统,而此前人们并不知道它们在四足动物中充当性染色体(与 Gallus 的 3 号染色体和 Gallus 的 18/30/33 号染色体同源),进一步突显了一个独特而令人着迷的趋势,即大多数连锁群都有可能充当有鳞动物的性染色体。
在有丝分裂过程中,纺锤体会发生形态和动态变化。它在后期开始时重组,此时反平行束 PRC1 积累并将中央纺锤体蛋白募集到中间区。人们对中央纺锤体在人类细胞中形态变化过程中的动态特性如何变化知之甚少。利用基因编辑,我们生成了从其内源性荧光位点表达 PRC1 和 EB1 的人类细胞,以量化其天然纺锤体分布和结合/解离周转。EB1 正末端追踪显示微管生长普遍减慢,而 PRC1 与其酵母直系同源物 Ase1 类似,与压缩的反平行微管重叠结合越来越强。 KIF4A 和 CLASP1 与中央纺锤体的结合更具动态性,但也显示出减慢的周转速度。这些结果表明,中央纺锤体在有丝分裂过程中逐渐变得更加稳定,这与最近在有丝分裂后期中央纺锤体中反向平行中区束形成的“捆绑、滑动和压缩”模型一致。
推进系统的特性可在档案文献中找到。鉴于此,本研究的目的是确定由电动机驱动的直径在 4.0 至 6.0 英寸范围内的各种小型螺旋桨的性能。设计和建造了一个实验测试台,其中螺旋桨/电动机安装在风洞中,以进行静态和动态测试。将本实验的静态和动态结果与以前的研究结果进行了比较。对于静态测试,推力系数、螺旋桨功率系数和总效率(定义为螺旋桨输出功率与电输入功率之比)与螺旋桨转速的关系图。对于动态测试,螺旋桨的转速在规则间隔内保持不变,同时自由流空速从零增加到风车状态。推力系数、功率系数、螺旋桨效率和总效率与各种转速的前进比的关系图。发现推力和扭矩随着转速、螺旋桨螺距和直径的增加而增加,随着空速的增加而减小。使用现有数据以及来自档案和非档案来源的数据,发现方形螺旋桨的推力系数随螺旋桨直径的增加而增加,其中 D = P 。螺旋桨系列的推力系数(sam