摘要 - 随着自动驾驶的快速进步,为其感应系统配备更全面的3D感知变得至关重要。但是,广泛探索的任务(例如3D检测或点云语义分段)重点是解析对象(例如汽车和行人)或场景(例如树木和建筑物)。在这项工作中,我们建议解决基于激光雷达的全景分段的具有挑战性的任务,该任务旨在以统一的方式解析对象和场景。特别是我们提出了动态转移网络(DS-NET),该网络是Point Cloud Realm中有效的全景分割框架。ds-net具有用于复杂LIDAR点云分布的动态移位模块。我们观察到,BFS或DBSCAN(例如BFS或DBSCAN)的常用聚类算法无法处理具有非均匀点云分布和不同实例大小的复杂自主驾驶场景。因此,我们提出了一个有效的可学习聚类模块,动态转换,该模块可以随时适应内核功能。为了进一步探索时间信息,我们将单扫描处理框架扩展到其时间版本,即4D-DS-NET,以进行4D Panoptic分割的任务,其中应为多个框架提供相同的ID ID预测。我们建议以更统一的方式求解4D Panoptic分割,而不是将跟踪模块附加到DS-NET上。该代码可在https://github.com/hongfz16/ds-net上公开获取。具体而言,4D-DS-NET首先通过对齐连续的LiDAR扫描来构造4D数据量,然后在其上执行时间统一的实例聚类以获得最终结果。进行了两个大规模自动驾驶激光雷达数据集(Semantickitti和Panoptic Nuscenes)的广泛实验,以证明所提出的溶液的有效性和出色性能。
自由航线空域 (FRA) 将在欧洲上空和下空域使用,确保与 TMA 的连通性,并通过跨境 FRA 延伸到国界之外。ATC 部门将得到整合,并将根据需要向跨境和动态解决方案发展,以满足交通需求。将引入动态空域管理和空域配置 (DAC) 以及动态移动区域,以优化空域的使用并满足民用和军用空域要求。TMA 可以动态扩展,并使用基于性能导航 (PBN) 的程序和连续下降和爬升操作 (CDO/CCO) 进行优化。无人和/或可选远程操作系统、高空运行(FL600 以上)、城市空中交通和其他新进入者将有效地融入网络运营。
摘要 - 在3D中了解我们世界的动态对于机器人应用的性能和稳健性至关重要。尽管最近的进度已与视觉模型和体积渲染结合起来提供语义3D表示形式,但大型模型的推理时间既不是实时机器人操作的所需更新速度。在这项工作中,我们建议将“对象”注入基于3D高斯人的语义表示[1]。具有相同语义标签的高斯人可以一起初始化和更新,从而导致快速更新,以响应机器人和对象运动。所有必要的语义信息都是从验证的基础模型的第一步中提取的,从而规避了大型模型的推理瓶颈,但仍获取语义信息。只有三个相机视图,我们提出的表示形式可以实时捕获30 Hz的动态场景,这对于大多数操纵任务就足够了。通过基于我们的对象感知的高斯分裂来利用表示形式,我们能够求解语言条件的动态握把,为此,机器人抓取了开放词汇查询指定的动态移动对象。我们还使用该表示形式通过行为克隆来训练视觉运动策略,并表明该策略通过预审计的编码者获得了基于图像的策略的可比结果。视频https://object-aware-gaussian.github.io