嵌入绝缘固态基质中的稀土 (RE) 离子为量子计算和量子信息处理提供了一个有趣的平台。稀土离子的核自旋和电子晶体场 (CF) 能级可用于存储和操纵量子态。由于稀土离子量子态的相干时间较长,它们非常适合实现量子比特。最近已证明,失相时间范围从 CF 态之间的电子跃迁的 100 µ s [1] 到核跃迁的 1.3 s [2],甚至通过使用动态解耦 [3] 可长达 6 小时。此外,通过检测钇铝石榴石 (YAG) [4, 5]、钒酸钇 (YVO) [6] 和硅酸钇 (YSO) [7–9] 发射的光子,已经证明了读出单自旋态的可能性,这使得此类稀土离子系统成为量子技术的有希望的平台。一些稀土离子在电信使用的频率范围内表现出 CF 跃迁,这使得它们非常适合用作量子中继器 [10, 11]。以前利用稀土离子进行量子计算的方案提出利用 CF 态的电偶极相互作用,建议通过间接偶极阻塞效应实现 CNOT 门 [12–14]。在该方案中,来自控制量子位的偶极场会使目标量子位的跃迁频率发生偏移。这被用来实现具有脉冲序列的 CNOT 门,只有当控制位处于逻辑 1 态时,该门才有效。这里我们提出了一种基于磁偶极相互作用的更快的两量子比特门,该门的灵感来自文献 [15] 中利用硅中的磷供体实现的两量子比特门,类似于金刚石中氮空位中心的混合电子和核自旋方案 [16]。我们在图 1 中展示了基本原理,并在图 2 中展示了相关能量尺度的基础层次。
B41.002:高 Q 值超导谐振器高电阻率硅晶片低温损耗角正切测量 B57.002:超导 Nb 薄膜中亚间隙准粒子散射和耗散 B57.008:Nb 超导射频腔的电磁响应 B57.010:用于高 Q 值谐振腔的高纯铌超导态氢化物的非平凡行为 B57.012:轴子搜索的可行性研究:Nb SRF 腔中的非线性研究 D37.002:基于三维微波腔的微波光量子转导 D39.013:带有级联低温固态热泵的量子阱子带简并制冷 D40.008:基准测试方八边形晶格 Kitaev 模型的 VQE D41.003:用于量子计算的 Nb 谐振器中氧化铌退火的原位透射电子显微镜研究 F36.005:识别超导量子比特系统中缺陷和界面处的退相干源 F36.006:使用双音光谱理解和减轻超导射频 (SRF) 腔中的损耗 F36.007:通过 HT 相界分析优化用于量子器件的 Nb 超导薄膜 F36.008:循环:超导量子比特的多机构表征 F36.010:铌射频腔的 Nb/空气界面的原子尺度研究 K29.002:超导量子材料与系统 (SQMS) – 新的 DOE 国家量子信息科学研究中心M41.009:可调谐 transmon 量子比特的长期能量弛豫动力学作为损耗计量工具 N27.006:超导量子材料与系统 (SQMS) 研究中心的量子信息科学生态系统工作 Q71.007:高磁场中的超导材料在高能物理量子传感中的应用 Q37.005:多模玻色子系统量子启发式的数值门合成 S38.003:基于微米级约瑟夫森结的约瑟夫森参量放大器的制造和特性 S72.009:探究低温真空烘烤对超导铌 3-D 谐振器光子寿命的作用 T00.106:铌硅化物纳米膜的稳定性、金属性和磁性 T00.119:不同 RRR 值的铌膜的特性低温 T72.005:单个纳米结处异质偶极场和电荷散射的太赫兹纳米成像 W40.006:量子芝诺效应对两能级系统的动态解耦 W34.013:3D SRF QPU 的潜在多模架构探索 Y34.008:高相干性 3D SRF 量子比特架构的进展 Y40.009:理解和减轻超导量子比特中 TLS 引起的高阶退相干
M. Veldhorst Qutech和卡夫利纳米科学学院,代尔夫特技术大学,荷兰摘要我们采用可扩展量子技术的方法脱离了晶体管,这是人类制造的最复制的结构。我们在硅和锗量子点的电子和孔的自旋状态下定义了Qubit。在这次演讲中,我将介绍我们最新的结果,以提高量子质量和数量。首先,我们证明即使是一个孔也可以连贯地控制。通过利用孔的强旋轨相互作用,我们获得了99.99%的栅极保真度的快速量子操作,为量子点系统设定了新的基准测试。此外,通过动态解耦,我们获得了孔的创纪录相干时间,并通过将此技术应用于带滤波器,我们能够测量与核自旋的横向超精细相互作用。第二,我们证明可以在相同的温度状态下操作量子点量子和控制电子设备。此外,我们表明可以使用完全工业的300毫米晶圆过程来实现量子位。这些共同定义了迈向集成量子电路的关键步骤。第三,我们构造了一个2x2量子点阵列,并在二维中显示量子耦合。我们获得了通用控制,并证明了纠缠和解开所有四个量子位的量子电路的连贯执行。Bio Menno Veldhorst是Qutech的小组负责人,Qutech Academy的领导和Tu Delft扩展学校的投资组合总监。他发表了60多篇论文,其中包括《科学与自然期刊》中的18个出版物。最后,我将提出克服量子到问题变化的策略,旨在构建比量子数少的控制线较少的量子系统,以实现量子和技术的相同材料和技术来实现量子优势,从而实现了当今信息年龄的相同材料和技术。Veldhorst在Twente大学获得了优异的奖项(A. Brinkman教授和H. Hilgenkamp教授)。他在新南威尔士大学的教授小组中进行了博士后研究。 A. Dzurak在硅中展示了单一和两分Qubit的逻辑,在2015年被物理学世界称为2015年物理学的前十名突破之一。他在Qutech的小组引入了平面锗量子,在一个开尔文上方证明了硅的通用逻辑,并实现了带有量子点的四个Qubit逻辑。为他对硅和锗量子技术的贡献,他获得了尼古拉斯·库尔蒂科学奖,他被列为麻省理工学院技术评论列表中的有远见的人35下的创新者。作为Qutech Lead Academy,Veldhorst开发了有关量子技术的大型在线课程(MOOC),这些课程吸引了已经吸引了80.000多名学生。