摘要 企业传播规划正处于转型期。在 VUCA 世界中,规划必须适应不稳定、不确定、复杂和模糊的环境。战略规划分析、计划、实施和评估传播计划或活动,但同时需要变得越来越敏捷。本文提出了战略规划正在从传统的、相当线性的方法向新的、更具动态性的模型演变的论点。基于文献,通过将设计思维原则、实践和技术引入传播研究的知识体系,提供了一种新的视角。因此,本文将设计思维作为一种思维方式和一种在企业传播规划中创造性解决问题的手段。一项在德国传播机构和咨询公司中进行的定性研究的结果表明,设计思维的元素已被实践者使用和实施。研究确定至少有五种类型的实现,其中三种与设计思维有明显的联系。基于这些发现,一种模块化、以利益相关者为中心的传播规划方法被概念化。
动态治疗方案(DTRS)提供了一种系统的方法来制定适合个人患者特征的顺序治疗决策,尤其是在感兴趣的生存结果的临床环境中。审查感知树的增强学习(CA-TRL)是一个新的框架,可在估计最佳DTR时解决与审查数据相关的复杂性。我们探索从观察数据中学习有效DTR的方法。通过增强基于树木的增强学习方法,具有增强的反可能性加权(AIPW)和审查感知的修改,CA-TRL提供了强大而可解释的治疗策略。我们使用SANAD癫痫数据集通过广泛的模拟和现实世界应用来展示其有效性,在该数据集中,它的表现优于最近提出的关键指标中提出的ASCL方法,例如受限的平均生存时间(RMST)和决策精度。这项工作代表着跨不同医疗机构的个性化和数据驱动的治疗策略迈出的一步。
我们提出了一种基于辩论动态的知识图谱自动推理新方法。其主要思想是将三重分类任务构建为两个强化学习代理之间的辩论游戏,它们提取论据(知识图谱中的路径),目标是分别促使事实为真(论点)或事实为假(反论点)。基于这些论据,一个称为评判者的二元分类器决定事实是真是假。这两个代理可被视为稀疏的对抗性特征生成器,为论点或反论点提供可解释的证据。与其他黑箱方法相比,这些论据让用户能够了解评判者的决定。由于这项工作的重点是创建一种可解释的方法以保持具有竞争力的预测准确率,因此我们在三重分类和链接预测任务上对我们的方法进行了基准测试。因此,我们发现我们的方法在基准数据集 FB15k-237、WN18RR 和 Hetionet 上的表现优于几个基线。我们还进行了一项调查,发现提取的参数对用户很有帮助。
通用缩放定律控制跨越平衡连续相变时产生的拓扑缺陷的密度。kibble-zurek机制(KZM)预测了缓慢淬火的淬火时间的依赖性。相比之下,对于快速淬火,缺陷密度以淬火的幅度普遍尺度。我们表明,通用缩放定律适用于由振荡外部场驱动的动态相变。系统对周期电势场的能量响应的差异导致能量吸收,对称性的自发断裂及其恢复。我们验证了相关的通用缩放定律,提供了证据表明,可以通过与KZM结合的时间平均临界指数来描述非平衡相变的关键行为。我们的结果表明,临界动力学的普遍性超出了平衡关键性,从而促进了对复杂非平衡系统的理解。
共同基金的目的是在五年的最低投资期内为股票和固定收益市场提供灵活的管理。尽管在较大的分配限制范围内运行,但可以将共同基金的概况与由65%的股票和35%的公共债券和私人债券组成的分配进行比较,该股票平均在发达市场中曝光,并在发达市场和新兴市场中。共同基金将被积极管理,而无需提及基准指数。投资策略是可行的,是基于在三个支柱周围组织的投资组合管理过程:•根据经理的定罪水平(资产类别,地理领域,部门),在中等/长期的战略资产分配的不同,•由经理的短期管理机构而造成的投资,以征服市场机会,以征服市场的投资,以征收•选择的投资机会,••选择范围的选择。根据我们的说法,随着时间的推移会产生性能。
在这项研究中,开发了用于踩踏过程中定量动态拟合的实时评估系统。该系统由LED标记,连接到计算机的数码相机和标记检测程序。LED标记附着在矢状面上的臀部,膝盖,踝关节和第五元。PlayStation3 Eye被选为本文中的主要数码相机具有许多使用运动捕获的优点,例如高FPS(每秒帧)约180fps,320×240分辨率和易于使用的低成本。制造商检测程序是通过将LabView2010与Vision Builder一起使用的。该程序由三个部分组成:图像采集和处理,标记检测和关节角度计算以及输出部分。数码相机的映像是在95FPS中获取的,并且设置了程序以实时测量较低的接头角度,以将用户作为图形提供,并允许将其保存为测试文件。通过使用Holmes方法在每个马鞍高度下在每个马鞍高度处进行三个鞍高度(膝盖角:25、35、45 O)和三个节奏(30、60、90 rpm)的踩踏板验证系统,这是一种测量下肢角度的方法,以确定鞍高的高度。结果显示,系统的平均误差和强相关性,分别是1.18±0.44 o,0.99±0.01 o。由于马鞍高度的变化,几乎没有错误,但节制发生了绝对错误。考虑到平均误差约为1°,它是用于定量动态拟合评估的合适系统。在未来的研究中,必须使用两个具有额叶和矢状平面的数码相机来减少误差。
层析成像是分析内部成分排列的一种方法。医学可能是利用这种方法并推动其发展的最著名学科。[1–3] 然而,层析成像也已应用于其他研究领域,如材料科学[4,5]、生物学[6]、考古学[7]甚至流体动力学[8],并且在工业领域也越来越受到认可,例如用于质量控制[9]或无损检测[10]。图像采集与实时重建算法[11]、高级图像分析[12]、特征分割和识别分析算法[13,14]与现代机器学习工具[15,16]的结合增强了这种方法的潜力。如今,实验室扫描仪普及且功能强大,受益于改进的空间和时间分辨率,尽管尖端实验仍然局限于高亮度同步加速器和X射线自由电子激光器。可以在极短的时间内获得高空间分辨率。[17,18] 对高空间和时间分辨率、大视野和高总记录时间的需求意味着目标的冲突。文献中概述了不同设备可用的实际速度和分辨率。[19–21]
将人造模式添加到QR码之类的对象中可以简化诸如对象跟踪,机器人导航和传达信息(例如标签或网站链接)之类的任务。但是,这些模式需要物理应用,它们会改变对象的外观。相反,投影模式可以暂时更改对象的外观,协助3D扫描和检索对象纹理和阴影等任务。但是,投影模式会阻碍动态任务,例如对象跟踪,因为它们不会“粘在对象的表面上”。还是他们?本文介绍了一种新颖的方法,结合了预测和持久的物理模式的优势。我们的系统使用激光束(精神类似于激光雷达)进行热模式,热摄像机观察和轨道。这种热功能可以追踪纹理不佳的物体,其跟踪对标准摄像机的跟踪极具挑战性,同时不影响对象的外观或物理特性。为了在现有视觉框架中使用这些热模式,我们训练网络以逆转热扩散的效果,并在不同的热框架之间移动不一致的模式点。我们在动态视觉任务上进行了原型并测试了这种方法,例如运动,光流和观察无纹理的无纹理对象的结构。