电力系统稳定性考虑因素 – 定义 – 稳定性分类 – 转子角和电压稳定性 – 同步机表示 – 经典模型 – 负荷建模概念 – 励磁系统建模 – 原动机建模。暂态稳定性 – 摆动方程 – 等面积准则 – 摆动方程的解 – 数值方法 – 欧拉方法 – 龙格-库特方法 – 临界清除时间和角度 – 励磁系统和调速器的影响 – 多机稳定性 – 扩展等面积准则 – 暂态能量函数方法。小信号稳定性 – 状态空间表示 – 特征值 – 模态矩阵 – 单机无限母线系统的小信号稳定性 – 同步机经典模型表示 – 场电路动力学的影响 – 励磁系统的影响 – 多机系统的小信号稳定性。电压稳定性 – 发电方面 - 输电系统方面 – 负荷方面 – PV 曲线 – QV 曲线 – PQ 曲线 – 静态负荷分析 – 负荷能力极限 - 灵敏度分析 - 连续功率流分析 - 不稳定机制 - 示例。提高稳定性的方法 – 暂态稳定性增强 – 高速故障清除 – 蒸汽轮机快速阀门 - 高速励磁系统 - 小信号稳定性增强 - 电力系统稳定器 – 电压稳定性增强 – 无功功率控制。
近年来,人们对磁场对生物系统的影响的研究兴趣浓厚,尤其是与磁感应有关的研究——磁感应是生物体感知地球地磁场以进行导航的能力。目前,有三种公认的主要理论来解释这一有趣的现象。例如,一种假设认为,一些候鸟可能依靠喙中的微小磁性沉积物来定位。然而,由于缺乏确凿的证据,这一想法仍然是研究人员争论的话题。1 另一种有趣的理论认为,某些光敏蛋白(称为隐花色素)存在于选择性动物的眼睛中,可能充当地球磁场的化学探测器。这一想法近年来得到了广泛的关注,但与磁性沉积物假设一样,它也等待进一步的实验验证。磁感应的一个有趣的替代理论围绕磁趋化细菌 (MTB) 展开,这是一种沿着地磁场线定位的微生物。磁感应假说认为,这些与动物共生的细菌可能成为动物磁感应的潜在机制。”2,3 该理论提出,MTB 是长期存在的磁感应之谜的答案。
特别有用,可将跳动和/或旋转驱动对模仿生物学微晶状体的微动体。开创性的例子是Dreyfus等人建造的游泳者。由一连串的杂志珠束缚在红细胞上。[25]在这里,游泳是以衍生方式诱导的精子,也就是说,通过击败支持弯曲波传播的柔性附属物。自从这一突破以来,已经制造了其他几种生物启发的磁性微晶状体,包括由定制的微型磁铁,软磁复合材料和众多体系结构制成的,其中磁性区域会使非磁性鞭毛/附属物依赖。[13,15,16,20,26–29]越来越多地,正在研究附属物对游泳性能的作用,这表明游泳速度随生物学和合成系统的长度,弹性和中风频率而变化。[15,26,28,30]此外,已经确定,生物微晶状体的集体相互作用非常依赖于耦合的鞭毛(附录)动力学和流动在亚氟lagellum长度尺度上产生的动力学。[30]这些相互作用在本质上被利用以促进性能:例如,小鼠精子形成长列火车以提高其速度。[7,10,30–33]然而,对合成系统的附属物设计的严格控制仍然是征税,当需要纳米级特征时,更是如此。通过Maier等人采用的DNA自我组装是DNA的一种特别有希望的方法。基于DNA瓷砖管束生成合成的鞭毛。[26]将这些束式水力组装成旋转的磁珠时,将水力组装成类似几微米的开瓶器样式确认,以类似于细菌的方式驱动翻译运动。尽管组装技术允许对合成鞭毛的扭曲和刚度进行精美的控制,但它们的长度受到寡聚和不受控制的影响。在这种交流中,我们以Maier等人的工作为基础。使用替代DNA自组装策略DNA折纸。此处,通过单链核苷酸的单链DNA环通过单链DNA低聚物的特定结合以构建定位的纳米级附件,以预先确定的方式折叠。[34–37]我们提出了一种调节附属物覆盖磁珠上均匀或用断裂的对称性的方法。通过时间依赖的磁场摇动这些构建体,我们发现虽然结构完全覆盖了DNA折纸,但在很大程度上表现出了
摘要和证据分析:根据美国神经病学学会(MEG)(MEG)(2009)磁脑电图(MEG),也称为磁源成像(MSI)是对脑活动产生的磁场的无创测量。典型的MEG记录是使用具有100到300磁力计或梯度计(传感器)的设备在磁性屏蔽室内进行的。它们被排列在一个名为Dewar的头盔形式的容器中。露水充满了产生超导性的液态氦气。产生磁场图的大脑源可以很容易地映射并显示在核监管MRI上。这会导致视觉显示正常的大脑活动,例如雄辩的皮层用于视觉,触摸,运动或语言的位置。它显示出同样良好的脑活动异常,例如癫痫病
GE 同步调相机旨在提供无故障、可靠的服务,是一种经过验证的解决方案,近一个世纪以来已有 200 多个应用。材料和制造技术的进步,加上现代控制技术,极大地提高了这种坚固、久经考验的解决方案的可靠性和功能性。操作员现在可以利用机电系统的简单性以及最先进的励磁和控制系统的优势来满足他们的电网支持需求。
6Eg,Alvin Tomer's7カε7巧か4晦re8,对于与此类意识形态预言相矛盾的经验性问答,s㏄:Am Markusen,PeterHAI1,and Amy Glasmeier,疏8hπch加8伽,Londonl AlIen and Unwin,19861 and Thierry Noyelle and Thomas Stanback,7γ1e Eωno'n'c丑oη⑳7η2α!'orπoゾ。4醒ε7'c佣α”θ5,Totowa,N.J.l Allanheld,Osman and Co.,1984, 7Mitchell Moss,“Te1㏄通讯与城市的未来,”in加η41)θりθZop耀π'5'磁85,1986, 3,第33-44页。 8Penny Gurstein,“电子家庭对社会空间模式的影响”,伯克利:加州大学,城市与区域规划系,CP284 研讨会论文,Sp.g1987。 9Margrethe H・01son・“美国在家工作趋势概述”现纽约:纽约大学工商管理研究生院,信息系统研究中心,1983。 10Alelandro Portes,Manuol Castells 和 Lauren Benton(编辑)著,巴尔的摩:约翰霍普金斯大学出版社,1988。