简介 Lawrence Kumar 博士是印度兰契贾坎德邦中央大学冶金与材料工程系的助理教授。他于 2011 年 8 月加入贾坎德邦中央大学。他获得了巴特那大学物理学硕士学位(固体物理学专业)、印度理工学院贝拿勒斯印度教大学(IIT-BHU-瓦拉纳西)材料科学与技术学院材料科学与技术技术硕士学位以及印度理工学院巴特那分校(IIT-Patna)博士学位。他拥有物理学 CSIR-UGC-NET、GATE 和 JEST 资格。迄今为止,他已经在同行评审的不同国际知名 SCI 期刊上发表了 30 篇研究文章,并在国际出版商出版的书籍中撰写了 7 个章节。迄今为止,在他的独家指导下已有两篇博士学位获得者。迄今为止,他已经指导了 40 篇 M.Tech 论文。他是许多国际期刊的审稿人,例如Journal of Alloys and Compounds、Ceramics International、Journal of American Ceramic Society、Arabian Journal of Chemistry、Materials Chemistry and Physics、Polymer Composites、Journal of Physics and Chemistry of Solids、Physica Scripta、Journal of Magnetism and Magnetic Materials等。
2024 年 2 月 3 日 尊敬的遴选委员会, 我写信是为了表达我对科罗拉多州立大学农业科学学院院长职位的热情。凭借二十多年的农业研究、教育和领导经验,我有动力和技能立即为科罗拉多州立大学的使命做出贡献,即促进全球教学、研究、服务和推广方面的卓越发展,造福科罗拉多州、国家和世界。作为农业研究和教育领域的资深领导者,我很高兴有机会进一步发展联系和愿景,通过可持续利用自然资源,加强科罗拉多州立大学在食品安全、食品保障、健康和经济繁荣相关领域的国家和国际领导者声誉。我在学术界的旅程受到坚定的承诺的影响,即促进跨学科合作、促进多样性和包容性以及推动变革。作为农业与生命科学学院研究与发现副院长和爱荷华州立大学农业实验站副主任,我率先采取了成功的举措,以培养透明、数据驱动决策和协作团队科学的文化。通过建立研究与发现办公室,我促进了战略伙伴关系,重组和精简了项目管理,并领导了学院未来十年战略计划的制定和实施。在我担任这一职务期间,学院的外部研究资金每年增长 9%(平均而言;相当于每位教职员工每年增长 18%)。我在美国农业部农业研究局 (ARS) 任职十年期间磨练了我的领导方式,在那里我重新发明了玉米遗传学和基因组学数据库,推动了全机构数据驱动发现的组织变革,并在联邦层面倡导了多样性、公平和包容性举措。我为推动多样性和民权活动所做的努力获得了中西部地区平等机会奖,这凸显了我致力于营造一个包容的环境,让所有人的声音都得到重视和倾听。我尤其被科罗拉多州立大学对农业科学学院院长的愿景所吸引,该愿景强调整合有意识的发现、包容性学习和协作参与,以应对食品安全、保障、健康和经济繁荣方面的全球挑战。作为一名有远见的领导者,我在建立和加强跨学科合作、吸引和留住多元化人才以及倡导农业研究和教育的变革力量方面有着成功的记录,我相信我有能力提升科罗拉多州立大学作为国内和国际农业创新领导者的声誉。我很高兴有机会将我的观点、技能和经验带到科罗拉多州立大学,并与教职员工、学生和合作伙伴合作,对世界产生持久影响。感谢您考虑我的申请。我期待讨论我的背景如何与科罗拉多州立大学推进 CAS 保持一致。诚挚的,
thia报告w h准备了一个*责任或; 或aay iafonmmmmmmmmmmmmmmti的aiftalam,产品或pracoat diese diese diesect of ha uae a a a a a a a a a a a a a a a aif a uiaitt n oiaitta diesecoat。 Referr- aace hareia to aa epecific oammsreal product, Proceet, or erviee by trade by trade, •Aafactarer, or otbanriee doaa boi urmirily coaatate or imply iu ladooymaat, recom- meatioa, or favoriag by the Urled Stae OAveraeaAaEat or Aaay Aaaacy thereof. 作者的Viewi aad aad aad aot aot aecewruy伴侣或uehed stalea stalea goraameat或ay sasacy的伴侣。责任或;或aay iafonmmmmmmmmmmmmmmti的aiftalam,产品或pracoat diese diese diesect of ha uae a a a a a a a a a a a a a a a aif a uiaitt n oiaitta diesecoat。Referr- aace hareia to aa epecific oammsreal product, Proceet, or erviee by trade by trade, •Aafactarer, or otbanriee doaa boi urmirily coaatate or imply iu ladooymaat, recom- meatioa, or favoriag by the Urled Stae OAveraeaAaEat or Aaay Aaaacy thereof.作者的Viewi aad aad aad aot aot aecewruy伴侣或uehed stalea stalea goraameat或ay sasacy的伴侣。
量子机器学习技术通常被认为是最有希望展示实际量子优势的技术之一。具体而言,如果内核与目标函数高度一致,量子核方法已被证明能够有效地学习某些经典难解函数。在更一般的情况下,随着量子比特数量的增加,量子核的频谱会呈指数“平坦化”,从而阻碍泛化并需要通过超参数控制归纳偏差。我们表明,为提高量子核的泛化能力而提出的通用超参数调整技术会导致内核与经典内核非常接近,从而消除了量子优势的可能性。我们利用多个先前研究的量子特征图以及合成数据和真实数据为这一现象提供了大量数值证据。我们的结果表明,除非开发出新技术来控制量子核的归纳偏差,否则它们不太可能在经典数据上提供量子优势。
摘要 — 近期量子计算机的错误率很高,相干时间很短,因此,尽可能缩短电路的编译时间至关重要。通常考虑两种类型的编译问题:从固定输入状态准备给定状态的电路,称为“状态准备”;以及实现给定酉运算的电路,例如通过“酉合成”。在本文中,我们解决了一个更一般的问题:将一组 m 个状态转换为另一组 m 个状态,我们称之为“多状态准备”。状态准备和酉合成是特殊情况;对于状态准备,m=1,而对于酉合成,m 是整个希尔伯特空间的维度。我们以数字方式生成和优化多状态准备电路。在基于矩阵分解的自上而下方法也可行的情况下,我们的方法可以找到具有明显(最多 40%)更少的双量子比特门的电路。我们讨论了可能的应用,包括有效准备宏观叠加(“猫”)状态和合成量子信道。索引词——量子计算、状态准备、编译、合成
我们展示了在数字量子计算机上对量子场论非平衡动力学的模拟。作为一个代表性的例子,我们考虑 Schwinger 模型,这是一个 1+1 维 U(1) 规范理论,通过 Yukawa 型相互作用耦合到标量场理论描述的热环境。我们使用在空间晶格上离散化的 Schwinger 模型的哈密顿量公式。通过追踪热标量场,Schwinger 模型可以被视为一个开放的量子系统,其实时动力学由马尔可夫极限中的 Lindblad 方程控制。与环境的相互作用最终使系统达到热平衡。在量子布朗运动极限中,Lindblad 方程与场论 Caldeira-Leggett 方程相关。通过使用 Stinespring 膨胀定理和辅助量子比特,我们使用 IBM 的模拟器和量子设备研究了 Schwinger 模型中的非平衡动力学和热态准备。作为开放量子系统的场论的实时动力学和此处研究的热态准备与核物理和粒子物理、量子信息和宇宙学中的各种应用相关。
调整大脑MRI数据分析中的全球度量与保留全球措施一直是一个长期存在的问题,并且可能对皮质的基因组研究具有重要意义。调整全球措施可确保关注区域的结果不会被总体上大的大脑大小混淆。但是,当总体措施相关时,对全球群体进行调整可能会丢弃重要信号。我们表明,在基因组研究中保留与全球脑测量的调整会影响基因发现,尤其是对额叶 - 顶质皮层的发现。了解与其他物种相比,了解有助于人类大脑中扩展的关联区域的遗传因素,例如前额叶皮层,可以帮助提供对更高人类认知及其独特发展的机械洞察力。