摘要 大脑皮层如何处理信息?为了回答这个问题,人们付出了很多努力来创造新的和进一步开发现有的神经成像技术。因此,fMRI 设备的高空间分辨率是准确定位认知过程的关键。此外,电生理装置的时间分辨率和记录通道数量的增加为研究神经活动的确切时间打开了大门。然而,在大多数情况下,记录的信号是多次(刺激)重复的平均,这会抹去神经信号的精细结构。在这里,我们展示了一种无监督机器学习方法可用于从单次试验的电生理记录中提取有意义的信息。我们使用自动编码器网络来减少单个局部场电位 (LFP) 事件的维度,以创建可解释的不同神经活动模式集群。令人惊讶的是,某些 LFP 形状对应于不同记录通道中的延迟差异。因此,LFP 形状可用于确定大脑皮层中信息流的方向。此外,在聚类之后,我们解码了聚类中心,以逆向工程底层的原型 LFP 事件形状。为了评估我们的方法,我们将其应用于啮齿动物的神经细胞外记录和人类的颅内 EEG 记录。最后,我们发现自发活动期间的单通道 LFP 事件形状来自可能的刺激诱发事件形状的范围。迄今为止,这一发现仅在多通道群体编码中得到证实。
引用本文: 解盘石, 杨航, 伍永平, 等 . 基于数字孪生的倾斜采场装备力学行为测控研究[J]. 煤炭科学技术 , 2024, 52(12): 259-271. XIE Panshi, YANG Hang, WU Yongping. Investigation into the monitoring and control of mechanical dynamics in inclined mining equipment utilizing digital twin technology[J]. Coal Science and Technology, 2024, 52(12): 259-271.
[20] Liu W W,Chen S Q,Li Z C等。使用单层跨表面[J]在Terahertz区域中在Terahertz区域中传输模式下的极化转换实现。光学信,2015,40(13):3185-3188。
摘要 激光定向能量沉积(L-DED)作为一种同轴送粉金属增材制造工艺,具有沉积速率高、可制造大型部件等优点,在航空航天、交通运输等领域有着广泛的应用前景。然而,L-DED在金属零件尺寸和形状的分辨方面存在工艺缺陷,如尺寸偏差大、表面不平整等,需要高效、准确的数值模型来预测熔覆轨道的形状和尺寸。本文提出了一种考虑粉末、激光束和熔池相互作用的高保真多物理场数值模型。该模型中,将激光束模拟为高斯表面热源,采用拉格朗日粒子模型模拟粉末与激光束的相互作用,然后将拉格朗日粒子模型与有限体积法和流体体积相结合,模拟粉末与熔池的相互作用以及相应的熔化和凝固过程。
© 作者 2023。开放存取。本文根据知识共享署名 4.0 国际许可协议获得许可,允许以任何媒介或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信用,提供知识共享许可的链接,并指明是否进行了更改。本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不被法定法规允许或超出允许用途,则您需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/。
kappaphycus alvarezii(doty)doty ex silva是一种广泛培养的针对角叉菜胶多糖的红色海藻,也是有价值的色素性脂素(PE)的潜在来源。因此,本研究的目的是从K. alvarezii中提取植料,评估其抗菌,抗氧化剂和抗癌活性,并确定其未来治疗应用的生物医学潜力。发现从K. Alvarezii提取的植物素化色素的蛋白质含量为69.84%,显示出极好的抗菌活性,抗杀菌性的oxytoca和Proteus mirabilis,最小抑制区为11 mm。使用总抗氧化剂,过氧化氢清除,减少功率,DPPH和ABTS测定法显示出显着的体外抗氧化活性。此外,颜料对人肺癌细胞系表现出有效的细胞毒性,IC 50值为131.7
现在将地球和物体视为一个系统,并假设没有其他外力作用于系统。那么引力就是内部保守力,在运动过程中对物体和地球都做功。当物体向上运动时,系统的动能会减小,主要是因为物体的速度减慢了,但地球的动能也会有不可察觉的增加。地球动能的变化也必须包括在内,因为地球是系统的一部分。当物体返回到其原始高度(与地球表面的垂直距离)时,系统中的所有动能都会恢复,尽管只有极小一部分被传输到了地球。
使用 Gamow 因子 θ ( k ) 重新进行了 Winful 的分析,以便进行推广。第三,对高场电子发射特性势垒重复 Gamow 分析。有几个候选势垒:(i) 镜像电荷或肖特基-诺德海姆 (SN) 势垒[20]:它描述金属 [21] 和半导体 [22] 的场发射,具有半解析的 Gamow 因子 θ ( k ),但透射 t ( k ) 和反射 r ( k ) 系数必须通过数值计算;(ii) Eckart 势垒[23]:它是非对称势垒,对于它,t(k) 和 r(k) 是解析的,但 Gamow 因子 θ ( k ) 必须通过数值计算; (iii) 三角势垒或 Fowler-Nordheim (FN) 势垒 [21] 用于场发射:它忽略了镜像电荷效应,但 t(k)、r(k) 和 θ(k) 都是完全解析的。因此,只有所选的三角势垒 (iii) 才是高场条件下场发射的简单、纯解析表示(并且是隧道波力学最具代表性的例子 [24, 25])。因此,FN 形式 [26–28] 用于开发和分析停留时间 τ d 和自干扰时间 τ i。
摘要:金属纳米结构对光学激发的响应导致局部表面等离子体(LSP)生成,并在例如量子光学和纳米光子学中驱动纳米级场限制驱动应用。Terahertz域中的现场采样对追踪此类集体激发的能力产生了巨大影响。在这里,我们扩展了此类功能,并在更相关的Petahertz域中对LSP进行直接采样。该方法允许以亚周期精度测量任意纳米结构中的LSP场。我们演示了胶体纳米颗粒的技术,并将结果与有限差分的时间域计算进行了比较,这表明可以解决等离子体激发的堆积和逐步化。此外,我们观察到了几个周期脉冲的光谱阶段的重塑,并通过调整等离激元样品来证明临时脉冲成型。该方法可以扩展到单个纳米系统,并应用于探索亚周期现象。关键字:等离激光,等离子体动力学,金纳米颗粒,Petahertz现场采样■简介
教学大纲 电动力学 (08 小时) 电动势和运动电动势、法拉第电磁感应定律和磁场中的能量、麦克斯韦方程组、麦克斯韦如何固定安培定律、物质中的麦克斯韦方程组、边界条件 电动力学中的守恒定律 (06 小时) 连续性方程、坡印廷定理、电动力学中的牛顿第三定律、麦克斯韦应力张量、动量守恒定律、角动量 电磁波 (08 小时) 一维波、真空和物质中的电磁波、物质中的吸收和弥散、导波 势与场 (07 小时) 标量势和矢量势、规范变换、库仑规范和洛伦兹规范、延迟势、 Jefimenko 方程、Lienard-Wiechert 势、移动点电荷的场辐射(06 小时)电偶极子辐射和磁偶极子辐射、任意源的辐射、点电荷辐射的功率、辐射反应电动力学和相对论(07 小时)狭义相对论和相对论力学、相对论电动力学、场张量、张量符号中的电动力学。