不可避免地,未来在 ECC 中使用地下水将给现有的含水层系统带来额外的压力。因此,重新评估以前绘制的含水层、可能定位未绘制的含水层并实施管理策略以确保地下水资源可供未来使用至关重要。由于管理策略和决策工具需要更准确的地质和水文地质模型,因此需要创新的数据收集方法。在复杂的地质地形中,例如 ECC,人们对冰川沉积物内以及冰川沉积物与下层基岩层之间的水力通道了解甚少,因此需要对冰川沉积物和基岩层进行连续高分辨率地质测绘,以更好地理解和说明地质层的结构。更好地了解 ECC 内的地质结构将有助于改进地质建模,从而有助于更好地建立 ECC 的水文地质模型。预计该模型将成为众多应用的基石,例如地下水勘探计划、含水层保护研究和重要补给区识别。更重要的是,该模型将形成地下水流建模练习和未来水预算计算的框架,从而改善水管理决策。
从事地球物理勘测的 RPA 所携带的传感器价格昂贵,携带这些昂贵传感器的 RPA 坠毁将明显影响业务案例: Headwall HyperSpec SWIR 高光谱相机的价格约为 95,000 美元
勘测与自动化设计 OR24-010 使用行业基础类 (IFC) 和建筑信息模型 (BIM) 技术进行数字协作 Arnold,Luke 10 月 23 日
国家博士研究员(AICTE-NDF)(2004-08):全印度技术教育委员会 (AICTE) 颁发奖学金,在孟买印度理工学院地球科学系进行博士研究。研究目的是从高分辨率卫星数据和地面地球物理电阻率勘测中识别硬岩地形中的裂缝和深层含水层。使用常规和图像处理技术从卫星图像中识别线性构造。沿着和穿过选定的线性构造进行地球物理电阻率勘测,并在选择的观测井中进行泵测试,以获得含水层特性,如孔隙度、渗透率、透水性、比产量、比容量和下降度。通过 ArcGIS 软件的加权和基于排名的集成分析,识别出合适的地下水潜力和人工补给区。
操作 G-859AP 采矿磁选机使用图形界面,可快速高效地进行勘测设计和数据采集。“简单”或“映射”模式使用线号和已知的放样参考点来定义地图参数。或者,用户可以使用集成的 Tallysman TW5310™ GPS 自动绘制位置图。位置信息可能来自外部 GPS、操作员输入的间距均匀的基准标记,或两者兼而有之。用户可随时切换到“剖面”模式,以堆叠剖面的形式观察最后 5 条数据线。数据收集在最多 5 个单独的勘测文件中,并通过高速 RS-232 数据链路(或带转换器的 USB)传输到计算机,以进行进一步分析和地图生成。提供功能齐全的图形数据编辑程序 MagMap2000,允许重新定位、重新对齐、GPS 平滑、数据过滤和数据插值。编辑后,数据将格式化为 Surfer for Windows 或 Geosoft 格式,以便进一步绘图和分析。速度和效率 G-859AP 数据采集提供连续(自动)或离散站点记录。由于仪器在连续模式下的采样率很高,因此数据质量始终很高,而且大多数项目的成本都较低。这使操作员能够快速勘测某个区域,在给定的时间段内覆盖的面积比其他磁力仪多 10 倍。
NGU 于 2012 年 7 月至 8 月在 Finnsnes 地区进行了航空地球物理勘测。本报告描述并记录了记录数据集的获取、处理和可视化。此处报告的地球物理勘测结果为 2715 线公里。Geotech Ltd. Hummingbird 频域 EM 系统辅以光泵铯磁强计和 1024 通道 RSX-5 光谱仪用于数据采集。勘测飞行线间距为 200 米,线方向为 120° NW-SE,平均速度为 89 公里/小时。鸟的平均离地间隙为 55 米。使用 Geosoft Oasis Montaj 软件在 NGU 中处理收集的数据。使用标准微调平算法对原始总磁场数据进行日变化校正和调平。使用自动和手动调平程序对电磁数据进行过滤和调平。使用均匀半空间模型分别从五个频率的同相和正交数据计算视电阻率。对视电阻率数据集进行调平和过滤。使用国际原子能协会推荐的标准程序处理辐射数据。所有数据均以 50 m 的单元大小进行网格化,并以 1:50 000 的比例呈现为阴影浮雕图。关键词:地球物理学
克 (g) 0.03527 盎司,常衡 (oz) 摄氏度 (°C) 的温度可以按如下方式转换为华氏度 (°F):°F=(1.8×°C)+32 除非另有说明,电导率以毫西门子每米 (mS/m) 为单位 除非另有说明,电阻率以欧姆米为单位 1 mS/m = 1000/ ( 1 欧姆米) 因此 10 mS/m = 100 欧姆米 垂直坐标信息参考“1988 年北美垂直基准 (NAVD 88)”,除非文中另有说明 水平坐标信息参考“1984 年北美基准,通用横轴墨卡托第 14 区 (NAD 84 UTM 区 14N)”,除非文中另有说明 GPS 数据的航空地球物理调查参考为 WGS84,如文中所述 主页文本给出了数据投影的描述,使用 din 采集和处理本报告中使用的首字母缩略词:EM 电磁 DTM 数字地形模型 GPS 全球定位系统 HEM 直升机电磁 RTP 简化到极点 USGS 美国地质调查局 UTM 通用横轴墨卡托本报告中使用的缩写:Hz 赫兹 kHz 千赫兹
不可避免地,ECC 未来的地下水使用将对现有的含水层系统造成额外压力。因此,重新评估以前绘制的含水层、潜在地定位未绘制的含水层并实施管理策略以确保地下水资源可供未来使用至关重要。由于管理策略和决策工具需要更准确的地质和水文地质模型,因此需要创新的数据收集方法。在复杂的地质地形中,例如 ECC,人们对冰川沉积物内以及冰川沉积物与下层基岩之间的水力通道了解甚少,因此需要对冰川沉积物和基岩进行连续高分辨率地质测绘,以更好地理解和说明地质地层的结构。更好地了解 ECC 内的地质结构将有助于改进地质建模,从而有助于建立更好的 ECC 水文地质模型。预计该模型将成为众多应用的基石,例如地下水勘探计划、含水层保护研究和重要补给区识别。更重要的是,该模型将形成地下水流建模练习和未来水预算计算的框架,从而改善水管理决策。