解决污染问题对于实现水资源恢复力同样重要。报告员强调,迫切需要更严格地执行《水框架指令》(WFD)和相关立法,以对抗水中的化学污染。全氟和多氟烷基物质(PFAS)和双酚等新兴污染物对生态和健康构成长期风险,需要立即采取行动。制定欧盟范围内的地下水和地表水中 PFAS 质量标准至关重要。此外,加强《水框架指令》下的监测,并采取综合措施规范工业排放、城市废水和农业投入,对于对抗 PFAS 和其他危险物质的污染是必要的。关于农业,共同农业政策资金应支持向低投入和有机农业实践的过渡,以减少对化学农药和化肥的依赖。通过从源头解决污染问题并整合循环经济原则,欧盟可以保护从源头到海洋的水资源。
引言打击植物疾病对于植物生产至关重要,但应伴随着实施环保实践(EFP)来保护人类健康和生态系统。农业中的EFP是指最大程度地减少生态影响并促进可持续性的所有策略(Rebouh等人。2023),而生物防治则反映了包括寄生虫,病原体和自然捕食者在内的生物体的平衡,以控制害虫种群和疾病(Thilagam等,2023)。Duart等。 (2023)报告说,在农业实践中过度使用合成化学物质将对环境和健康问题产生负面影响。 Librizzi等。 (2022)讨论了,包括使用天然产物和微生物在内的替代策略可以是控制植物疾病的有前途的解决方案,而没有化学农药的残留作用。 另一方面,Olufolaji和Ajayi(2021)报道说,有机管理实践表明,除了为农业实践提供具有成本效益,无毒和环保的方法外,还表明了植物疾病的成功管理。 kekalo(2022)报告说,使用生物杀菌剂和化学使用的减少在保护诸如ROT ROT之类的疾病中起着重要作用,鼓励使用可持续和生态声音的方法用于农业中。 有机管理技术,自然化合物和微生物多样性Duart等。(2023)报告说,在农业实践中过度使用合成化学物质将对环境和健康问题产生负面影响。Librizzi等。(2022)讨论了,包括使用天然产物和微生物在内的替代策略可以是控制植物疾病的有前途的解决方案,而没有化学农药的残留作用。另一方面,Olufolaji和Ajayi(2021)报道说,有机管理实践表明,除了为农业实践提供具有成本效益,无毒和环保的方法外,还表明了植物疾病的成功管理。kekalo(2022)报告说,使用生物杀菌剂和化学使用的减少在保护诸如ROT ROT之类的疾病中起着重要作用,鼓励使用可持续和生态声音的方法用于农业中。有机管理技术,自然化合物和微生物多样性
范围:根据IPBES全球评估报告30,污染是生物多样性损失的五个主要直接驱动因素之一。该主题的重点是化学污染,在过去的几十年中,由于区域和污染类型的关键差异一直在增加。定量评估包括系统监控的变量,这些变量具有某些排放到大气中,水体和工业活动和家庭的陆地系统。然而,污染不仅在定量方面,而且在定性术语中也在发生变化,并监视了许多危险物质,包括新兴的关注点,以及有关影响生物多样性和生态系统服务的知识。该主题旨在更好地了解化学污染的暴露途径以及毒理学和生态影响(不包括工业污染)对陆地生物多样性和生态系统31(A区域)的途径。根据2030年欧盟生物多样性策略,压力包括营养物质,化学农药,药品,有害化学物质,城市和工业废水以及其他废物(包括垃圾和塑料)的释放。
病原体引起的植物疾病对全球农业生产力和粮食安全构成了重大威胁。依靠化学农药进行疾病管理的传统方法已被证明是不可持续的,这强调了迫切需要可持续和环保的替代方案。一种有希望的策略是通过各种方法增强植物对病原体的抗性。本综述旨在揭露和探索刺激植物耐药性的有效方法,将脆弱的植物转变为对病原体的警惕捍卫者。我们讨论了常规和创新方法,包括基因工程,诱导的全身耐药性(ISR),启动以及天然化合物的使用。此外,我们分析了这些方法所涉及的潜在机制,突出了它们的潜在优势和局限性。通过对这些方法的理解,科学家和农艺师可以制定新的策略来有效地对抗植物疾病,同时最大程度地减少环境影响。最终,这项研究为利用植物的先天防御机制提供了宝贵的见解,并为农业可持续疾病管理实践铺平了道路。
引言打击植物疾病对于植物生产至关重要,但应伴随着实施环保实践(EFP)来保护人类健康和生态系统。农业中的EFP是指最大程度地减少生态影响并促进可持续性的所有策略(Rebouh等人。2023),而生物防治则反映了包括寄生虫,病原体和自然捕食者在内的生物体的平衡,以控制害虫种群和疾病(Thilagam等,2023)。Duart等。 (2023)报告说,在农业实践中过度使用合成化学物质将对环境和健康问题产生负面影响。 Librizzi等。 (2022)讨论了,包括使用天然产物和微生物在内的替代策略可以是控制植物疾病的有前途的解决方案,而没有化学农药的残留作用。 另一方面,Olufolaji和Ajayi(2021)报道说,有机管理实践表明,除了为农业实践提供具有成本效益,无毒和环保的方法外,还表明了植物疾病的成功管理。 kekalo(2022)报告说,使用生物杀菌剂和化学使用的减少在保护诸如ROT ROT之类的疾病中起着重要作用,鼓励使用可持续和生态声音的方法用于农业中。 有机管理技术,自然化合物和微生物多样性Duart等。(2023)报告说,在农业实践中过度使用合成化学物质将对环境和健康问题产生负面影响。Librizzi等。(2022)讨论了,包括使用天然产物和微生物在内的替代策略可以是控制植物疾病的有前途的解决方案,而没有化学农药的残留作用。另一方面,Olufolaji和Ajayi(2021)报道说,有机管理实践表明,除了为农业实践提供具有成本效益,无毒和环保的方法外,还表明了植物疾病的成功管理。kekalo(2022)报告说,使用生物杀菌剂和化学使用的减少在保护诸如ROT ROT之类的疾病中起着重要作用,鼓励使用可持续和生态声音的方法用于农业中。有机管理技术,自然化合物和微生物多样性
• 斯旺西大学研究了一种昆虫病原真菌 Metarhizium brunneum 及其挥发性有机化合物 (VOC) 作为传统化学农药替代品的风险和适用性。研究团队将知识产权授权给 Certis Europe BV,由他们开发 M. brunneum VOC 作为新型农药。基于这项研究,Certis Europe BV 创造了三种新型农药和一种新的土壤害虫防治方案。这项研究使公司能够更新和更新产品并开拓新市场。 • 南威尔士大学与一家专门研究氢技术的英国公司 ITM Power Plc 合作,开发了一种无碳排放的氢气生产技术。他们还与塔塔钢铁公司、HyET(荷兰)和 Skyre(美国)合作,探索从炼钢中回收氢气。该团队已经开发出一种生产、储存和使用低碳氢气的方法,目前已在 21 个国家的加油站和电转气计划中使用。
在气候变化、害虫和病原体蔓延、世界人口不断增长的粮食需求以及农药使用对环境造成巨大影响的背景下,Flors 等人 ( 1 ) 在《科学前沿》上发表的头条文章提出了一种替代的创新理念,即以环保高效的方式利用植物的内在恢复能力来应对这些挑战。这篇及时的文章强调了诱导抗性 (IR) 现象,这是植物对病原体和/或食草动物攻击的免疫反应的一部分。目前,研究人员的主要目标是减少甚至取代合成化学农药的使用,以可持续、生态和经济可行的方式保护生物多样性,并最大限度地减少对土壤和地下水的有害影响。Flors 等人 ( 1 ) 提出,内源性的植物防御机制通常比使用农药等更环保、更高效、更有针对性,从而为未来减少对农药的依赖提供了动力。我们支持作者的想法,并提供我们的观点和一些批判性考虑,希望这将有助于推动这一进程。
经常使用合成农药会由于难以分解的残留物而对环境产生负面影响。生物农药可以是使用化学农药的替代材料,因为它很容易分解自然。生物农药的主要原材料是含有可能对害虫有毒的活性化合物的植物,例如诺伊叶。noni叶子可以用作生物农药的原料,因为它们的生物碱化合物的含量可以杀死害虫。制造生物农药最重要的过程之一是干燥原材料,旨在去除水含量,因为高水含量会干扰提取过程。本研究旨在比较使用太阳烘干机和烤箱干燥的Noni叶的含量。由于太阳能干燥机的加热有所波动,因此重要的是要回顾产生的生物农药的质量。使用GCMS分析测试使用太阳能干燥器和烤箱之间生物农药质量的结果表明,生物农药含量并没有太大不同。但是,太阳能干燥机产生的生物农药具有胺基化合物的最高含量,即乙基羟嗪,而烤箱产生的生物农药的羧酸和酯类组的含量最高。
在全球谷物产量不断增加的背景下,伴随着各种农药,除草剂,杀菌剂和其他化学农药的大量投资。它引起了不可避免的环境问题和食品安全问题。当前的研究表明,使用环糊精及其衍生物保护农药可以显着减少污染环境的农业化学数量。使用环糊精的空腔特性,我们可以参考药物分子生产环糊精和环糊精聚合物形成包含化合物的类似方式。总体而言,β-环糊精及其衍生物被用作一种新的农药赋形剂,以提高农药的稳定性,防止其氧化和脱位,改善农药的溶解度和生物利用度,减少药物的毒性副作用,并掩盖药物的食物。在这篇综述中,我们着重于总结β-环糊精及其在农药和其他领域中的衍生物的最新研究进展,并在各种应用中提供了β-环糊精聚合物的系统分类,以及新的Shinthesis方法和技术。最后,预见了环糊精样聚合物的未来发展,并深入讨论并解决了研究引起的问题。
在本研究中,通过刺激番茄植物中生化防御和生理生物化学性能,研究了促进真菌植物生长(PGPF)的改善能力。从Beta ufgaris Rotosphere培养的土壤(Tamiya,Fayoum省,埃及)中总共分离了25种真菌分离株。这些真菌分离株的特征是某些植物生长促进活性代谢产物的产生,从而增强植物生长并抑制疾病。选择了四种真菌分离株作为植物生长促进最多的。四个真菌分离株在形态上被鉴定为尼日尔曲霉,弗拉夫斯,粘液sp。和青霉sp。在温室条件下,用这些真菌治疗的番茄植物分别对枯萎病显着降低。生化防御,例如渗透压,氧化应激和抗氧化剂酶的活性,在种植后60天进行。结果表明,氧化孢子菌株对番茄植物的高度破坏性作用为PDI 87.5%。此外,适用于感染番茄的PGPF滤液改善了渗透液,总苯酚和抗坏血酸。有趣的是,枯萎病对番茄植物的有害影响大大降低了,从降低的MDA和H 2 O 2水平可以明显看出。因此,这些结果强调,土壤含有拮抗真菌提供了几种植物生长 - 促进真菌(PGPF),可以将其作为番茄植物中强大的生物控制剂利用,以针对紫红色枯萎病。Biostimulans包括非致病性关键词:促进真菌的植物生长;镰刀菌;生物压力,生化防御。在气候变化的威胁和病原体的传播,提高农作物生产力并避免使用化学农药的情况下引入引入是农业行业的主要问题[1]。真菌疾病是许多国家对农作物造成严重损害的最危险的生物学压力之一[2]。最著名的真菌疾病病原体之一,镰刀菌,会对农作物,尤其是蔬菜作物产生负面影响[3-5]。然而,通过番茄生长的所有阶段,氧气孢子菌引起的真菌枯萎病[6,7]。番茄被认为是埃及最重要的作物之一,用于局部喂养和出口[8]。考虑到番茄作物的重要性,开发了提高对生物胁迫(例如真菌等生物压力)的新管理方法的发展,可能有助于增强安全且不含有害化学农药的全球粮食生产[9]。一致认为,可以通过外部喷洒生物和非生物刺激或诱导剂来激活植物感染的植物免疫。