该表基于 2013 年 1 月 1 日至 2022 年 9 月 29 日期间的 FracFocus 数据,逐县显示了德克萨斯州油气公司注入 PTFE 用于水力压裂、被 EPA 确定为 PFAS 或使用至少一种氟表面活性剂或潜在氟表面活性剂进行水力压裂的油井数量。在此表中,术语“氟表面活性剂”涵盖“非离子氟表面活性剂”的公开用途,而术语“潜在氟表面活性剂”涵盖“氟烷基醇取代聚乙二醇”的公开用途,被 EPA 确定为 PFAS。两位化学家将非离子氟表面活性剂鉴定为 PFAS 或可能降解为 PFAS 的前体。第三位化学家将它们鉴定为可能的 PFAS,一位委员会认证的毒理学家将它们鉴定为潜在的 PFAS。总重量数字反映了我们有足够信息来计算化学品重量的所有记录的总和。
都柏林 2,爱尔兰 电子邮件:connons@tcd.ie,iamartin@tcd.ie 吖内酯是环化氨基酸衍生物,在手性催化剂存在下可以进行动态动力学拆分。1 过去三十年来,它们一直受到有机化学家的极大关注,因为它们具有大量可能的转化;包括对映选择性开环反应。与此过程相关的一个关键限制是缺乏非醇衍生的亲核试剂;对映选择性硫解 2 和氨解 3 是理想的,但目前范围有限。该项目旨在通过间接氨解外消旋吖内酯来开发一种可重复和对映选择性的肽连接。这将成为肽化学家合成对映体富集的非天然氨基酸的有用资源。为此,使用胺亲核试剂取代苯酚酯中间体以避免直接非选择性加成的问题,并且开发了一类新型、高度可改性的金鸡纳衍生离子对催化剂。
1 YRS Rao 博士 科学家 ‘G’ 国家水文研究所 (NIH) 鲁尔基 2 Suresh Kumar 博士 助理化学家 中央地下水委员会 (CGWB) 3 MJ Nandan 博士 首席科学家 国家地球物理研究所 (NGRI),海得拉巴 4 K. Sravanthi Jeevan 女士
研究人员专注于颗粒物。颗粒是污染的青少年。他们会伤害心脏,引起呼吸问题并弄乱某些大脑功能。在世界某些地区仍然在木炉中烹饪的地方,颗粒物的水平会更糟。即使是电炉的热量也可以产生气流,这些气流可以在整个房屋的空气中从食物中传播化学物质。在真正的房屋中,人们还洗澡或洗澡并使用个人护理产品。此类产品包括除臭剂,指甲油,擦酒和洗发水。JOOST DE GOUW是科罗拉多大学博尔德分校的大气化学家。 许多家庭产品使用称为萜烯的化学物质来模仿树木或其他植物的气味。 和许多萜烯是挥发性有机化合物。 这意味着它们在室温下变成气体。JOOST DE GOUW是科罗拉多大学博尔德分校的大气化学家。许多家庭产品使用称为萜烯的化学物质来模仿树木或其他植物的气味。和许多萜烯是挥发性有机化合物。这意味着它们在室温下变成气体。
研究目标 我团队的研究目标是控制有机半导体聚合物薄膜的宏观和纳米级形貌,以开发功能性、经济高效、便携且环境友好的有机电子设备。该小组旨在优化有机电化学晶体管(OECT),以提供用于神经病理学检测(联合国目标 3)和用于确定水是否可饮用的细菌检测(联合国目标 6)的新一代生物传感器。为了实现这些目标,该小组精心设计了新的高度结构化的聚合物薄膜,并了解驱动其化学和电化学掺杂的基本机制。我们将各种显微镜技术与先进的原位光谱和电表征技术相结合,以合理指导分子和器件工程。为了开展这项高度跨学科的研究,该小组正在与国际知名的(i)化学家合作,提供用于回答我们研究问题的最先进的性能聚合物,(ii)物理化学家,使用顶尖的表征仪器,以精确度澄清具体问题,以及(iii)生物学家,通过开发功能性生物传感器来评估我们的研究结果并提高技术就绪水平。
得分¼1.5至5.9:复杂性级别1。得分¼6至7.9:复杂性级别2。得分¼8至9.9:复杂性级别3。得分¼10至15:复杂性4。主要医生是指全科医生,家庭医生,儿童医生和内科医生。其他医生是指敏锐者,病理学家,麻醉师,微生物学家,生物化学家,普通外科医生,骨科医生等。b定义。18
职业选择包括生态学家,环境化学家,环境顾问,环境科学家,研究科学家,科学政策官员或可持续发展顾问等。在渔业,国家公园,动物园和水族馆,保护与环境保护机构,基础设施与发展组织,大学和研究机构的工作。毕业生可以将他们的科学知识和专业知识转化为科学传播,旅游业或咨询机会的职业。
化学家传统上依靠实验来收集数据并进行分析,以增进对化学的理解。然而,自 20 世纪 60 年代以来,计算机方法已经得到发展,以协助化学家完成这一过程,从而催生了一门称为化学信息学的新学科。该领域已应用于药物发现、分析化学和材料科学等各个领域。近年来,一种发展势头强劲的方法是将人工智能 (AI) 应用于化学。AI 已用于预测分子特性、设计新分子以及验证拟议的逆合成和反应条件等任务。它的使用通过降低成本和与时间相关的问题,在药物发现研发方面取得了重大进展。尽管取得了这些进步,但 AI 在化学中的概念仍然相对未被探索。近年来,人工智能 (AI) 在化学领域的应用显著增长。期刊和专利出版物均大幅增加,尤其是自 2015 年以来。分析化学和生物化学表现出最大的 AI 整合,增长率最高。总之,本综述全面概述了 AI 在化学各个领域的进展,旨在为学术受众提供有关其未来方向的见解。。
本文是关于化学物质的量子模拟。虽然这是一篇化学期刊上关于法拉第讨论的介绍性文章,但实际上它是为两个读者群撰写的:量子化学家和量子信息理论家。这是因为,尽管近年来量子化学和量子信息理论的交集越来越多,但一个领域的从业者往往对另一个领域的观点了解有限。本文的一个目的是描述量子化学家对化学物质中量子多体问题的直觉。这种直觉指导了当今对改进方法及其应用的研究。另一个目的是给出一个关于量子化学的有利观点,希望能够强调量子信息理论家的一些关注点,我们相信这对量子化学的未来发展有用。量子信息论是一个具有可证明结果的数学领域,而量子化学主要是经验领域。由于作者是量子化学家,本文以量子化学的非正式风格撰写。在某些情况下,它提供了作者的(非严谨的)个人意见。直觉和意见显然不是定理,但我们希望它们能够在前进的道路不明朗时成为有价值的路标。