摘要:这篇评论强调了高精度液相色谱的优势,其示例探测器(HPLC-ECD)在检测和量化通过脑外微透析获得的生物学样品方面的优势,具体是血清素作酸和多巴胺能系统:5-HTA,5-HTA,5-HTROX,5-HYDROX,特定于血清素效能系统: 3,4-二羟基苯基乙酸(DOPAC),多巴胺(DA),3-氧化氨基胺(3-MT)和同源酸(HVA)。以其速度和选择性认可,HPLC可以直接分析脑内微透析样品而没有复杂的衍生化。用于神经递质(NTS)和代谢产物分离的各种色谱方法,包括反相(RP)。电化学检测器(ECD),尤其是使用玻璃碳(GC)电极,以其简单性和敏感性强调,旨在通过改性电极材料等优化策略来增强可重复性。本文强调了检测限制(LOD)和定量(LOQ)和线性范围(L.R.)展示了对化合物浓度实时监测的潜力。lod,loq和L.R.的文献值的非排量汇编。包括最近的出版物。
doi:https://dx.doi.org/10.30919/es1178基于pt@r-go@mwcnts ternary nanocomposites修饰电极Y. Bakytkarim,bakytkarim,1,1,1,#S。tursynbolat,#ZHBOLAT,2 ZHBOLAT,2 ZHBOLAT,2 ZHBOLAT,2 Z.S. Mukatayeva,1,* ye。Tileuberdi,1 N.A.Shadin,1 ZH.M. Assirbayeva,1,* L. S. Wang,3 L.A. Zhussupova 4和Zhexenbek Toktarbay 5,6摘要这项工作报告了一种电化学传感器,用于对氯酸的高敏化电化学测定。 电化学传感器主要是由PT@r-go@mwcnts三元纳米复合材料制成的,通过一锅方法制备,修饰的材料结构的特征是通过扫描电子显微镜(SEM)和能量分散性X射线光谱光谱(EDS)技术来表征。 使用环状伏安法(CV)和差异脉冲伏安法(DPV)研究了PT@r-go@mwcnts/gce上氯化酸的电化学行为。 由于PT@r-go@mwcnts纳米复合材料的出色电导率和催化特性,与裸露的GCE相比,PT@r- go@mwcnts/gce显示出更强的电化学响应信号,对氯酸。 在pH 6.0处的0.1 M PBS缓冲溶液中,富集潜力为-0.1 V,富集时间为150 s,PT@R- GO@MWCNTS/GCE的线性范围用于检测氯化酸的0.005〜2 µm和2〜20 µm和2〜20 µm和2〜20 µm,并且检测极限为0.001。 此外,该传感器还具有良好的选择性,可重复性和稳定性,并已成功用于检测真正的血清样品中的绿原酸。Shadin,1 ZH.M.Assirbayeva,1,* L. S. Wang,3 L.A. Zhussupova 4和Zhexenbek Toktarbay 5,6摘要这项工作报告了一种电化学传感器,用于对氯酸的高敏化电化学测定。电化学传感器主要是由PT@r-go@mwcnts三元纳米复合材料制成的,通过一锅方法制备,修饰的材料结构的特征是通过扫描电子显微镜(SEM)和能量分散性X射线光谱光谱(EDS)技术来表征。使用环状伏安法(CV)和差异脉冲伏安法(DPV)研究了PT@r-go@mwcnts/gce上氯化酸的电化学行为。由于PT@r-go@mwcnts纳米复合材料的出色电导率和催化特性,与裸露的GCE相比,PT@r- go@mwcnts/gce显示出更强的电化学响应信号,对氯酸。在pH 6.0处的0.1 M PBS缓冲溶液中,富集潜力为-0.1 V,富集时间为150 s,PT@R- GO@MWCNTS/GCE的线性范围用于检测氯化酸的0.005〜2 µm和2〜20 µm和2〜20 µm和2〜20 µm,并且检测极限为0.001。此外,该传感器还具有良好的选择性,可重复性和稳定性,并已成功用于检测真正的血清样品中的绿原酸。
氨基酸改性石墨烯氧化石墨烯衍生物(GO-AA)作为活性材料,用于捕获和随之而来的有机污染物的电化学检测。草甘膦(gly)是许多水室中的双甲虫,被选为基准物种,以测试这些材料的电活性性质的有效性,从而可以直接证明捕获事件的证据。l-赖氨酸,L-精氨酸或L-蛋氨酸通过环氧环开口反应在GO表面移植,促进了氨基酸结合,并伴有GO的部分减少。合成过程导致电荷电阻从8.1kΩ下降到各种GO-AA的0.8 - 2.1kΩ,支持这些材料在电化学传感中的适用性。将所得的ly-赖氨酸,精氨酸和Go-Methionine剥削出来从水中吸附。Go-赖氨酸与Gly具有最强的相互作用,1小时后的去除效率为76%,比颗粒活性碳(工业基准的吸附剂)高约2倍。go-aas的效果优于原始的未修饰材料,当被用作捕获和在电化学检测Gly之后的主动材料时。Go-赖氨酸表现出最佳的敏感性,即使在浓度水平下降至2μg/L时也可以在水中识别Gly。mo lecular动力学模拟证实,该材料的增强性能可以归因于Lys部分和Gly之间的氢键和盐桥相互作用,该相互作用源自氢键和盐桥相互作用。
异丙嗪(PHZ)被用作兽医中的镇静剂,其残留物可能威胁到人类的健康。PHz的电化学检测是适合在该领域应用的方法。然而,由于基质干扰,传统的电分析很难直接在肉样品中进行。这项工作将磁性固相提取和差异脉冲伏安法整合,以高度敏感和选择性地确定牛肉和牛肉肝脏中的PHZ。COFE 2 O 4 /用C 18功能化的介孔二氧化硅(mg@msio 2 -c 18)涂有含量的石墨烯,合成为分散的磁吸附剂以提取Phz。用氮掺杂的空心碳微球(HCM)修饰的磁性玻璃碳电极通过PHz吸引Mg@MSIO 2 -C 18,并直接检测PHZ而无需洗脱程序。mg@MSIO 2 -C 18可以分离PHz,以避免杂质在引起检测时的干扰,并在磁电上集中PHZ。此外,使用HCM的电极修饰可以扩增PHz的电化学信号。最后,集成的PHZ测定方法表现出较宽的线性范围从0.08μmol/L到300μmol/L,检测到9.8 nmol/l的低极限。牛肉样品分析提供了出色的恢复,这表明该方案有望在真实肉类样本中快速和现场检测PHZ©2023©2023由Elsevier B.V.代表中国化学学会和中国医学学院的Materia Medica Institute,中国医学科学院出版。
摘要:本综述全面概述了用于制造植入式微电极的 3D 打印技术,用于在心血管和神经退行性疾病的早期诊断中电化学检测生物标志物。这些疾病的早期诊断对于改善患者预后和减轻医疗系统的负担至关重要。生物标志物是这些疾病的可测量指标,而植入式微电极为其电化学检测提供了一种有前途的工具。在这里,我们讨论了各种 3D 打印技术,包括立体光刻 (SLA)、数字光处理 (DLP)、熔融沉积成型 (FDM)、选择性激光烧结 (SLS) 和双光子聚合 (2PP),重点介绍了它们在微电极制造中的优势和局限性。我们还探讨了用于构建植入式微电极的材料,强调了它们的生物相容性和生物降解特性。研究了电化学检测的原理和所使用的传感器类型,重点介绍了它们在检测心血管和神经退行性疾病的生物标志物中的应用。最后,我们讨论了 3D 打印植入式微电极领域的当前挑战和未来前景,强调了它们在改善早期诊断和个性化治疗策略方面的潜力。关键词:3D 打印、植入式微电极、心血管和神经退行性疾病、电化学检测、早期诊断、个性化治疗、立体光刻、生物标志物
在固态电解质(SSE)中使用金属有机框架(MOF)一直是一个非常有吸引力的研究领域,在现代世界中引起了广泛关注。SSE可以分为不同的类型,其中一些可以与MOF结合使用,以通过利用高表面积和高孔隙率来改善电池的电化学性能。但是,它也面临许多严重的问题和挑战。在这篇综述中,分类的不同类型的SSE类型,并描述了添加MOF后这些电解质的变化。之后,引入了这些带有MOF的SSE,以用于不同类型的电池应用,并描述了这些SSE与MOF结合在细胞电化学性能上的影响。最后,提出了MOFS材料在电池应用中面临的一些挑战,然后给出了一些解决MOF的问题和开发期望的解决方案。
b'sandwich排列,其中包含捕获目标 - 信号探针。随后通过监测观察到的亚甲基蓝(MB)的峰值电流变化来检测所得的DNA杂交事件,该峰值电流变化被用作氧化还原物种,并实现了35 AM的检测极限。Wang等。 [5]基于RGO和锰四苯基孢子的A \ XCF \ X80-偶联结构的自组装纳米复合材料开发了DNA生物传感器,导致6 \ xc3 \ x9710 14M的检测极限,在另一项研究中,在另一项研究中,Ye等。 [6]采用了一个转导界面,该界面由捕获的DNA序列,Aunps和Thionines在玻璃碳电极上官能化RGO来构建无标记的DNA生物传感器,并获得了4.28 \ xc3 \ x9710 199的检测极限。 Chen等。 [7]还基于由氧化铜纳米线和羧基官能化的单壁碳纳米管(SWCNT)组成的杂化纳米复合材料(SWCNTS)开发了特定的序列DNA检测。 DNA检测是通过循环伏安法和3.5 \ xc3 \ x9710 15 m的检测极限。 Zhou等。 [8]使用化学上的RGO电极通过差分脉冲伏安法对ssDNA和dsDNA中的四个DNA碱基的无标记电化学检测进行了。 他们达到了2.0 \ XCE \ XBC M的检测极限,线性浓度范围为0.01至10 mm。 在另一项研究中,Zhang等人。 [9]为特定序列检测制造了无标记的DNA传感器。Wang等。[5]基于RGO和锰四苯基孢子的A \ XCF \ X80-偶联结构的自组装纳米复合材料开发了DNA生物传感器,导致6 \ xc3 \ x9710 14M的检测极限,在另一项研究中,在另一项研究中,Ye等。[6]采用了一个转导界面,该界面由捕获的DNA序列,Aunps和Thionines在玻璃碳电极上官能化RGO来构建无标记的DNA生物传感器,并获得了4.28 \ xc3 \ x9710 199的检测极限。Chen等。 [7]还基于由氧化铜纳米线和羧基官能化的单壁碳纳米管(SWCNT)组成的杂化纳米复合材料(SWCNTS)开发了特定的序列DNA检测。 DNA检测是通过循环伏安法和3.5 \ xc3 \ x9710 15 m的检测极限。 Zhou等。 [8]使用化学上的RGO电极通过差分脉冲伏安法对ssDNA和dsDNA中的四个DNA碱基的无标记电化学检测进行了。 他们达到了2.0 \ XCE \ XBC M的检测极限,线性浓度范围为0.01至10 mm。 在另一项研究中,Zhang等人。 [9]为特定序列检测制造了无标记的DNA传感器。Chen等。[7]还基于由氧化铜纳米线和羧基官能化的单壁碳纳米管(SWCNT)组成的杂化纳米复合材料(SWCNTS)开发了特定的序列DNA检测。DNA检测是通过循环伏安法和3.5 \ xc3 \ x9710 15 m的检测极限。Zhou等。 [8]使用化学上的RGO电极通过差分脉冲伏安法对ssDNA和dsDNA中的四个DNA碱基的无标记电化学检测进行了。 他们达到了2.0 \ XCE \ XBC M的检测极限,线性浓度范围为0.01至10 mm。 在另一项研究中,Zhang等人。 [9]为特定序列检测制造了无标记的DNA传感器。Zhou等。[8]使用化学上的RGO电极通过差分脉冲伏安法对ssDNA和dsDNA中的四个DNA碱基的无标记电化学检测进行了。他们达到了2.0 \ XCE \ XBC M的检测极限,线性浓度范围为0.01至10 mm。在另一项研究中,Zhang等人。 [9]为特定序列检测制造了无标记的DNA传感器。在另一项研究中,Zhang等人。[9]为特定序列检测制造了无标记的DNA传感器。将DNA固定在用石墨烯,Aunps和Polythionine(Pthion)修饰的玻璃碳电极上。通过不同的脉冲伏安法检测到杂交,并且在0.1 pm至10 nm的动态范围内达到了35 fm的检测极限。Bo等人开发了石墨烯和聚苯胺的电化学DNA生物传感器。[10]用于DPV检测辅助DNA序列,并达到了'
披露:Noé 博士是 F. Hoffmann-La Roche Ltd. 的员工,并曾接受过其设备、材料、药品、医学写作、礼物、股票或其他服务。Bordogna 博士和 Hilton 女士是 F. Hoffmann-La Roche Ltd. 的员工,并拥有其股票。Archer 博士是 Roche Products Ltd. 的员工,并拥有 F. Hoffmann-La Roche Ltd. 的股票。Smoljanovic 博士是 F. Hoffmann-La Roche Ltd. 的员工。Woodhouse 先生是 Foundation Medicine, Inc. 的员工。Mocci 博士是 Genentech, Inc. 的员工,并拥有 F. Hoffmann-La Roche Ltd. 的股票。Gadgeel 博士曾从阿斯利康、艾伯维、勃林格殷格翰、百时美施贵宝、F. Hoffmann-La Roche Ltd./Genentech, Inc.、默克、诺华、Novocure、辉瑞、杨森、Blueprint、礼来和武田。
©2021 Elsevier出版。此手稿可在Elsevier用户许可证下提供https://www.elsevier.com/open-access/userlicense/1.0/
人类肠道中包含大量的微生物,其代谢产物和潜在的有害食品抗原。肠上皮通过表达各种因素将各种因素组装成物理和化学屏障,将免疫细胞位于腔微生物中分离。除了上皮细胞外,免疫细胞对于通过产生炎症和抗炎性介质的生产而对粘膜屏障至关重要。肠道微生物群,由生物微生物的肠生态群落代表,影响宿主免疫系统的成熟和稳态,并有助于维持上皮完整性,并从其代谢中得出的小分子,称为代谢,称为代谢物。反过来,免疫细胞从微生物群中接收信号,并且可能在维持健康的细菌组成和增强上皮屏障功能方面起关键作用,从而导致宿主 - 细菌互助的建立。在包括炎症性肠道疾病在内的各种疾病的患者中,观察到微生物群和代谢组的改变。在这篇综述中,我们将讨论微生物及其代谢物在调节宿主免疫系统中的生理功能,并增强上皮屏障功能。对这些过程的进一步了解将有助于鉴定新的治疗靶标,并随后在一系列慢性炎性疾病中发展治疗干预措施。