化学工业材料与技术证书将为学生提供化学所有基本原理的基础知识,如化学计算、热力学、化学平衡、液晶、固态、原子结构、111 多种元素的周期性、冶金操作、酸和酸的各种概念、碱、氧化还原反应、有机化学和催化的基本原理。本课程还提供良好实验室规范 (GLP) 和各种基本分析方法的实践知识,以及先进材料、陶瓷、表面化学、结晶、X 射线粉末衍射、蒸馏、蒸发、吸收、过滤、萃取、干燥和有机化合物纯化的基本知识。学生还将能够在实验室进行定性和定量分析。本证书课程肯定有助于学生获得化学和制药行业工业化学的基础知识,通过这些知识,他们可以更好地在政府和私营部门服务中就业,特别是在食品安全、卫生部门、化学工业等领域。第二年
分子光谱、量子化学计算、生物物理化学、太阳能纳米材料化学:用于吸附的先进纳米材料、水污染物的光催化降解、生物医学应用有机金属化合物、用于将二氧化碳还原为增值产品的催化剂设计、无机化学清洁能源研究:用于光催化制氢和二氧化碳还原的纳米材料的合成、水污染物的光催化修复。有机合成(方法论)、不对称合成、光氧化还原催化、全合成、有机合成中的电化学材料化学、有机合成、天然产物化学环境化学、大气化学、微塑料、水研究、回收技术和废物管理、健康风险、环境工程。基于碳水化合物的荧光材料:爆炸物和重金属离子/阴离子检测;在光动力疗法和有机电子学中的应用(跨学科)天然产物化学、防腐抑制剂
广义上讲,我的指导性问题是:在由量子力学控制的宇宙中,哪些任务可以有效完成?这个问题对物理学和计算都有影响。对于后者,量子计算机将重塑计算格局,并对整个社会产生下游影响。对于前者,物理学中的许多基本问题都在问我们能在量子世界中做什么,这使得它们在本质上成为算法:大自然能产生奇异的量子现象吗?我们如何见证这一点,是通过实验还是通过模拟?具体来说,我研究量子算法,调查量子计算的应用:我的博士论文是机器学习,最近的研究是多体量子系统。这样的系统——比如大分子、超导材料,以及任何涉及纠缠的东西——是物理学和化学计算研究的核心主题。这两种应用都提出了大胆的愿景,即比我们通常的“经典”计算机实现范式转换的加速,但证明这种加速的存在却出奇地棘手 [ A15 ; L+23 ]。我的目标是找到正式的证据,证明我们真正可以期待未来的量子计算机是什么样子。我得出的一些见解包括:
摘要:螯合剂在微电子工艺中常用于防止金属离子污染,螯合剂的配体片段在很大程度上决定了其与金属离子的结合强度。寻找具有合适特性的配体将有助于设计螯合剂以增强微电子工艺中对基底上金属离子的捕获和去除。本研究采用量子化学计算模拟十一种配体与水合态的Ni 2+ 、Cu 2+ 、Al 3+ 和Fe 3+ 离子的结合过程,用结合能和结合焓来量化金属离子与配体的结合强度。此外,我们利用前线分子轨道、亲核指数、静电势和基于分子力场的能量分解计算探讨了结合作用机制,并解释了十一种配体结合能力的差异。根据我们的计算结果,提出了有前景的螯合剂结构,旨在指导新螯合剂的设计以解决集成电路工艺中的金属离子污染问题。
© 阿菲永科卡特佩大学摘要 本研究以苯胺衍生物为原料,合成了一种新型的咪唑和喹啉基偶氮化合物 (MITPDQ),该苯胺衍生物用作合成用于治疗白血病的尼洛替尼的中间体,并对其进行了表征,并用 NMR、FTIR、UV、FTIR 和 MS 等光谱技术阐明了其结构。使用 DFT (B3LYP) 方法和 6-311G (d,p) 基组进行理论计算,以获得 MITPDQ 的优化几何形状和光谱数据。将实验结果与理论结果进行了比较,发现它们是彼此兼容的。利用优化的 MITPDQ 几何形状,还与癌症相关蛋白质进行了分子对接研究。从对接结果来看,MITPDQ 和 2XIR 蛋白之间的最高对接得分为 -11.0 kcal/mol。此外,还计算了 MITPDQ 的 ADMET 属性。通过ADMET和分子对接研究,我们得出结论,经过进一步的研究,MITPDQ具有成为候选药物的潜力。关键词 咪唑;喹啉;量子化学计算;分子对接;ADMET
新的化学反应的发展本质上与人类的繁荣和环境的保护。最近具有深远影响的这种变革性化学反应的一个例子是交叉偶联反应,该反应是通过2010年诺贝尔化学奖授予的。这些反应用于生产大约20%的所有药物试剂,几乎所有液晶和有机电致发光材料。这些化学反应的工业用途每年为全球经济贡献约60万亿日元。因此,新的化学反应的发展显着影响社会的发展。ICREDD是北海道大学的WPI中心化学反应设计与发现研究所,来自不同学科的研究人员结合了他们的优势,以完全控制化学反应。该研究所的意识到,有目的的化学反应设计需要在每个步骤中进行横断面合作。从事这样一个基本的自然过程,量子化学计算,信息技术,现代实验技术和先进材料的开发,如果我们想实现重大突破,则不再是单独的领域。相反,他们必须成为真正集成研究的多样化工具箱的一部分。
摘要。腐蚀是一个严重的问题,通常很难完全消除。腐蚀过程经历了许多反应,这些反应改变了金属表面和局部环境的组成和特性。发现有机和无机抑制剂等几种抑制剂很昂贵,有毒,并对环境造成负面影响,这些抑制剂限制了这些抑制剂对腐蚀的使用。在过去的几年中,研究人员将药物用作腐蚀抑制剂。使用药物作为腐蚀抑制剂的使用是无毒的,便宜的,并且对环境的负面影响可忽略不计。通过使用不同类型的药物(褪黑激素,头孢氨酸,曲马多等)作为多种金属等多种金属(如碳钢,碳钢和铝钢)进行了几项研究。研究表明,发现这些药物的抑制作用在金属表面上形成不溶性复合物,从而保护其免受腐蚀。通过使用减肥技术(WL),电力动力极化(PDP)测量,电化学抗性光谱(EIS),电化学频率调制(EFM)和线性抗性等方法,研究了不同药物的腐蚀抑制效率。通过扫描电子显微镜,X射线衍射和原子力显微镜研究了在添加药物之前和之后金属的表面形态。最近通过使用过期的Dapsone药物作为针对低碳钢的腐蚀抑制剂进行了研究工作。腐蚀速率随着抑制剂浓度的增加而降低。腐蚀速率随着抑制剂浓度的增加而降低。研究表明,在低碳钢表面形成改良的戴蓬酮药物的吸附膜会导致质量和电荷转移的阻塞,从而进一步导致腐蚀抑制。头孢氨酸药物对碳钢腐蚀(CS)的影响已通过体重减轻和电化学方法检查。EIS研究表明,抑制过程是通过电荷转移。 使用密度功能理论(DFT)方法进行药物分子的量子化学计算,并发现头皮肽是一种良好的耐碳钢腐蚀抑制剂。 总体而言,研究泄露使用药物作为腐蚀抑制剂的使用不仅是保护金属免受腐蚀的最佳选择,而且还导致对过期药物的废物管理。 本综述着重于近年来药物作为对各种金属的腐蚀抑制剂的利用。EIS研究表明,抑制过程是通过电荷转移。使用密度功能理论(DFT)方法进行药物分子的量子化学计算,并发现头皮肽是一种良好的耐碳钢腐蚀抑制剂。总体而言,研究泄露使用药物作为腐蚀抑制剂的使用不仅是保护金属免受腐蚀的最佳选择,而且还导致对过期药物的废物管理。本综述着重于近年来药物作为对各种金属的腐蚀抑制剂的利用。
由于政府政策不断促进绿色替代品对有毒石化物质的替代品,最近在开发绿色腐蚀抑制剂方面的研究工作已经加剧。当前工作的理解是开发出源自4-氨基氨基氨酸的新型绿色和可持续的腐蚀抑制剂,以有效防止在腐蚀性环境中碳钢腐蚀。重量法被用于研究4--((呋喃-2-甲基甲基)氨基)反吡啶(FAP)和4-(((((吡啶-2-基甲基)氨基)抗吡啶)抗吡啶(PAP)的敏感性钢(1 M HCl中)1 M HCl。FAP和PAP分组为量子化学计算。dft用于使用在HCl中测试的抑制剂来确定碳钢腐蚀抑制的机理。结果表明,这些经过测试的抑制剂可以有效抑制1.0 M HCl的低碳钢腐蚀。在0.0005 m时,这些抑制剂的FAP和PAP效率分别为93.3%和96.5%。这些抑制剂在低碳钢表面遵守Langmuir吸附等温线。吸附能量的值,表明FAP遵循化学和物理吸附。
材料建模的人工神经网络(ANN)获得了显着的兴趣。我们报告了基于Boltzmann机器(BM)体系结构对ANSATZ的ANSATZ的ANSATZ的改编,用于量子化学计算[Yang等,J。Chem。理论计算。,2020,16,3513–3529]。在这里,这项研究将其扩展的形式主义提出了量子算法,该算法可以通过量子门制备NQ。ANN模型的描述符被选为电子配置的占领,是用量子机械代表的。我们的算法可能具有与先前研究中使用的基于经典抽样的组合相比的潜在优势。可以使用量子本机程序准确地形成NQ。仍然,在能量最小化方面对模型的训练有效地在经典计算机上进行。因此,我们的方法是一类变异的量子本素。BM模型与Gibbs的分布有关,我们的准备程序利用了量子相估计的技术,但没有哈密顿的进化。通过在量子计算机模拟器上实现该算法来评估所提出的算法。显示了理论的完整空间配置相互作用水平的说明性分子计算,并确定了与我们先前经典方法的准确性的一致性。
摘要:大型强关联系统的量子化学计算通常受到计算成本的限制,而计算成本会随系统规模呈指数级增长。专为量子计算机设计的量子算法可以缓解这一问题,但所需的资源对于当今的量子设备来说仍然太大。在这里,我们提出了一种量子算法,该算法将化学系统的多参考波函数的局部化与量子相位估计 (QPE) 和变分酉耦合簇单重和双重 (UCCSD) 相结合,以计算其基态能量。我们的算法称为“局部活性空间酉耦合簇”(LAS-UCC),对于某些几何形状,该算法与系统规模呈线性关系,与 QPE 相比,总门数减少了多项式,同时提供的精度高于使用 UCCSD 假设的变分量子特征求解器,也高于经典的局部活性空间自洽场。 LAS-UCC 的准确性通过将 (H 2 ) 2 分解为两个 H 2 分子以及通过破坏反式丁二烯中的两个双键来证明,并且提供了最多 20 个 H 2 分子的线性链的资源量估计。■ 简介