摘要在这项工作中,我们回顾了基于氟化金属有机前体的化学溶液沉积(CSD)在使用化学溶液沉积(CSD)方面取得的最新进展,从而增强了超导reba 2 Cu 3 O 3 O 7(Rebco)膜和涂层导体(CCS)。首先,我们研究了基于新型低氟金属溶液的溶液制备,沉积和热解相关的步骤的进步。我们表明,可以使用一种新型的多功能胶体溶液(包括预制的纳米颗粒(NP))来引入人工钉中心(APC)。我们分析了如何在热解过程中解散发生的复杂物理化学转化,目的是最大化膜厚度。了解成核和生长机制对于使用自发隔离或胶体溶液方法进行微观结构的微观调整而言至关重要,并使工业可扩展此过程。高级纳米结构研究已深刻地改变了我们对缺陷结构及其家谱学的理解。这是高度浓度的随机分布和定向的BAMO 3(M = ZR,HF)NP所起的关键作用,从而增强了APC的浓度,例如堆叠断层和相关的部分脱位。将缺陷结构与临界电流密度j C(H,T,θ)相关联,可以在整个H -T相图中严格控制涡旋固定属性并设计涡流固定景观的一般方案。我们还指通过转移
本文件的一部分,在此指定的范围内。除非另有说明,否则这些文件的发行是招标或合同中引用的发行。联邦规范 CCC-C-440 - 布料,粗棉布,棉,漂白和未漂白 TT-P-28 - 油漆,铝,耐热 TT-P-2760 - 底漆涂层:聚氨酯,弹性体,高固体 联邦标准 FED-STD-595 - 政府采购使用的颜色 颜色编号 16473, 36440 商业项目描述 A-A-59166 - 涂层化合物,防滑(用于人行道) 国防部规范 MIL-DTL-5002 - 武器系统金属表面的表面处理和无机涂层 MIL-DTL-5541 - 铝和铝合金上的化学转化涂层 MIL-C-8507 - 涂层,金属洗涤底漆(预处理),应用(航空用途) MIL-C-8514 - 涂层化合物,金属预处理,树脂酸 MIL-PRF-22750 - 涂层,环氧,高固体 MIL-PRF-23377 - 底漆涂层:环氧,高固体 MIL-PRF-32239 涂层系统,高性能,用于航空航天应用 MIL-DTL-53022 - 底漆,环氧涂层,防腐,无铅无铬酸盐 MIL-DTL-53039 - 涂层,脂肪族聚氨酯,单组分,耐化学药剂 MIL-DTL-53072 - 耐化学药剂涂层 (CARC) 系统应用程序和质量控制检查 MIL-DTL-64159 - 伪装涂层,水分散性脂肪族聚氨酯,耐化学药剂 MIL-PRF-81352 -涂料,A
TT-C-490F 2013 年 1 月 31 日 取代 TT-C-490E 2002 年 7 月 22 日 联邦规范 金属基材化学转化涂层和预处理(有机涂层基础) 总务管理局已授权所有联邦机构使用此联邦规范。1.范围和分类 1.1 范围。本规范涵盖涂料涂抹器的金属基材的工艺、预处理和预底漆表面处理。它涵盖了延迟腐蚀开始和促进底漆附着的金属表面处理。此外,本规范还涵盖了转化涂层、预处理和预底漆涂层的鉴定测试要求。1.2 分类。本规范涵盖以下清洁方法、表面处理工艺和金属类别(见 6.2)。1.2.1 表面清洁。表面清洁可能包括以下一种或多种方法以满足表面清洁度要求(见 6.1.1 和 6.1.2)。方法 I - 机械或喷砂清洁、打磨、研磨,符合美国防护涂层协会 (SSPC) 标准。方法 II - 通过浸泡、喷洒、蒸汽或手工擦拭进行溶剂清洁。方法 III - 通过浸泡、喷洒、超声波、热碱或电解方法进行洗涤剂清洁。AMSC N/A AREA MFFP
抽象的微型塑料已成为紧迫的环境问题,对生态系统,水体,陆地景观和人类食品来源产生深远的影响。鉴于全球塑料废物危机,正在探索创新的策略来管理和回收塑料废物,重点是微塑料。研究旨在将废物微塑料转变为有价值的资源,与循环经济原则无缝融合。微塑料。微塑料可以在化学和物理上进行组成选择,然后使用生物,化学和机械方法进行转化。生物转化涉及微生物活性和酶利用,化学转化涉及化学转化率将聚合物分解为较小的分子,这些分子可用作有价值材料的原料,而机械转换则适用于物理力来减少聚合物的大小。常规和可生物降解的塑料都可以在一定程度上进行生物学,化学和机械回收,以保持其价值并防止浪费不可再生的资源。然而,在微塑料的转化中存在挑战,包括成本效益,可扩展性,环境友好性和监管考虑因素。适当的宏观管理和生命周期评估分析对于过渡到可持续和循环经济仍然至关重要。关键字:微塑料,转换技术,增值产品
本规范已获国防部所有部门和机构批准使用。1.范围 1.1 范围。本文件涵盖军用装备上使用的 CARC 系统的应用和检查要求。在选择适合涂漆表面的材料和程序的过程中需要使用它,并为下面引用的清洁、预处理和涂层规范提供额外的应用、检查和质量控制信息。本文件并未减轻对腐蚀预防和控制进行适当考虑的需要(例如,材料选择、系统设计、制造工艺、维护和车辆开发和维护期间的其他考虑因素)。2.适用文件 2.1 一般规定。本节列出的文件在本规范的第 3、4 或 5 节中指定。本节不包括本规范其他部分引用的文件或推荐用于补充信息或作为示例的文件。尽管已尽一切努力确保此列表的完整性,但文件用户应注意,他们必须满足本规范第 3、4 或 5 节中引用的文件的所有指定要求,无论这些文件是否列出。2.2 政府文件。2.2.1 规范、标准和手册。以下规范、标准和手册构成本文件的一部分,并在此处指定。除非另有规定,否则这些文件的发行版是招标或合同中引用的。联邦规范 TT-P-28 - 油漆,铝,耐热。TT-C-490 - 金属基材的化学转化涂层和预处理(有机涂层的基础)。
摘要:酶以极高的选择性催化化学转化。通过定向进化,我们可以重新编程酶以应用于生物催化和医学。在第一部分中,我将讨论我的工作,即发现、表征和设计卤化未活化 Csp3—H 键的 FeII/α-酮戊二酸依赖性酶。我解决了一种新型赖氨酸卤化酶 (BesD) 的厌氧晶体结构,发现了能够形成九种新氯化氨基酸的同源物,并开发了酶级联以产生氯化杂环、二胺、酮酸和肽。通过结构研究和高通量筛选,我研究了该酶家族中区域选择性和催化选择性的机制基础,并利用由此获得的见解来设计羟化酶以进行卤化,其活性和选择性与天然卤化酶相当。在第二个故事中,我通过定向进化开发了新型胞嘧啶碱基编辑器 (CBE)。碱基编辑器由可编程的 DNA 结合蛋白(如催化受损的 Cas9)组成,与脱氨酶融合,可实现基因组中靶位点的精确核苷酸变化。将 C•G 碱基对转化为 T•A 的 CBE 通常比其腺嘌呤碱基编辑器 (ABE) 更大,并且具有更多不良的脱靶编辑。为了开发一类保留 ABE 有利特性的新型 CBE,我使用连续蛋白质进化来进化 ABE,以便在治疗相关位点和细胞类型内进行高效的胞嘧啶碱基编辑。这些新进化的碱基编辑器克服了现有 CBE 的几个局限性,并展示了蛋白质进化在应对生物技术挑战方面的力量。
在合成过程中,纳米材料会逐渐发生转变,从而产生明确的纳米晶体特性。目前,工业上最广泛使用的是纳米材料的批量合成。然而,由于批量反应器内混合不一致、局部浓度和温度变化,出现了可重复性和可扩展性问题。在流动合成中,使用微流体反应器可以克服这些限制,因为大的表面积与体积比可以增强热量和质量传递,从而加快反应速度并提高产量。[4c,5] 在快速化学中,化学转化发生得非常快,并且仅通过混合过程进行控制。因此,微流体系统内的增强混合使涉及不稳定中间体的快速连续反应能够发生 [6],由此产生的均质环境提高了对所需产品的选择性,从而提高了反应产量。此外,流动化学可以通过控制反应的停留时间,在不稳定的反应性物质分解之前将其分离 [7],方法是调节反应物的流速或微反应器长度。高混合性是微流体系统的一个关键优势,尽管在层流状态下,缓慢扩散占主导地位。[8] 微通道内产生的抛物线速度分布导致较长的停留时间,这不可避免地会产生粒度分散性,[10,35] 如图 1A 所示。促进对流并增强微通道内的混合是减少这种多分散性的一种方法,例如,通过在拐角和弯道引入 Dean 涡流或通过分段液-液/液-气流动引入 Taylor 涡流,[10,36] 如图 1B 所示。此外,流动化学中对反应参数的严格控制是实现实验室间反应条件标准化的一个主要优势,从而提高了实验的可重复性。[10] 在安全性方面,微流体系统消耗的危险试剂量较少,降低了安全风险,并允许使用否则会非常危险的极端化学条件。
1 氢气通常根据生产所用的能源和技术及其碳强度进行区分。绿色氢气由可再生能源通过电解水生产,而蓝色氢气由天然气生产,采用一种称为蒸汽重整的工艺,但会使用 CCS 捕获二氧化碳。灰色氢气是目前最常见的氢气生产形式,使用蒸汽甲烷重整,但不捕获该过程中产生的温室气体。 2 欧盟氢能战略还指出,如果符合可持续性要求,可再生氢气也可以通过重整沼气(而不是天然气)或生物质的生物化学转化来生产,但本文并未详细考虑这一点,因为 SEAI 的热研究结果显示爱尔兰通过这种方法生产氢气存在局限性。 3 本讨论文件中提到了不同的能量单位。kW 是功率单位或产生或使用能量的速率。安装的发电量通常是指其可以产生能量的速率或其功率,例如安装在 X 位置的 X kW 或 MW 风力发电。 kWh 是特定时间段内的能量单位,与功率的关系如下:能量 = 功率 * 时间。例如,2021 年风电总装机容量为 4,330 MW,但风电总发电量为 9,530,000MWh。MW 等于 1000kW,GW 等于 1000MW,TW 等于 1000GW。发电或用电量(例如电费单)通常以 kWh/MWh/GWh/TWh 为单位进行测量和记录。可再生电力产生的电力还取决于其容量系数,即平均发电量与装机容量全年发电量达到最大值时的理论最大值之比。2012 年至 2021 年期间风电平均容量系数为 28%。风能产生的氢气量还取决于特定电解器的效率以及不同储存机制的效率。电解器的效率从 60% 到 80% 不等,但并非所有电解器的效率都达到相同的水平,可供大规模部署。
摘要:能源系统向 100% 可再生能源 (RES) 转型的趋势正在开始显现其影响,并越来越受到人们的接受。在这种情况下,大型光伏和风力发电厂将发挥主导作用。同时,随着电力运输、热泵和电转气技术的日益普及,能源消费的电气化预计将进一步发展。RES 的不可完全预测性是其众所周知的缺点,考虑到能源转型,它将需要使用储能技术,特别是大规模的电能到化学转化和化学能到电能的再转化。尽管如此,在这种情景下,关于中小型 CCHP 技术的潜在作用的分析文献还很少。因此,本文的目的是探讨在上述情景下,由废热驱动的热电联产 (CHP) 和/或冷热电联产 (CCHP) 技术可能发挥的作用。首先,本文对可能由低温余热源供电的中小型热电联产技术进行了回顾。然后,对拉彭兰塔理工大学研究人员研究的 100% 可再生能源情景进行了回顾(通过所谓的“LUT 模型”),以确定可以为中小型热电联产技术供电的潜在低温余热源。其次,通过从双方收集的交叉数据,介绍了上述余热源和所回顾的热电联产技术之间的一些可能的相互作用。结果表明,最适合所选热电联产技术的余热源是与燃气轮机(热回收蒸汽发生器)、蒸汽轮机和内燃机相关的余热源。还进行了初步的经济分析,结果表明,在电力和热力生产方面,所考虑的热电联产技术每单位安装千瓦的潜在年节约额分别可达 255.00 欧元和 207.00 欧元。最后,讨论了 100% 可再生能源情景中热电联产/冷电联产集成的碳足迹前景。
在过去的几十年中,已经观察到大气二氧化碳(CO 2)浓度的持续和逐渐升高。CO 2水平的这种上升有助于温室效应,从而导致地球表面上更多的热量并随后的全球变暖。基于当前趋势,预计全球温度将在2030年至2052年之间升高约1.5°C。鉴于这种情况,必须通过采取实质性采取实质性的措施来减少CO 2排放,从而减轻全球变暖。一种应对这一挑战的方法是二氧化碳的隔离,从而从大气中捕获并用来生产有价值的产品。这不仅有可能减少大气中的CO 2数量,而且还可以降低与减少排放相关的成本。二氧化碳当存在高于环境水平的情况下,可以直接用于将其注入油井中的增强油回收率。此外,它可以化学转化为材料,化学物质或燃料,例如甲醇,水泥,生物炭和燃料产生。虽然没有一项技术可以完全解决气候变化,但已经开发了几种创新的方法来帮助降低大气CO 2级别。这些包括直接空气捕获,云处理,基于生物质的结构,蓝色碳栖息地的恢复以及增强的风化。探索和描述了这些方法和二氧化碳隔离的策略,以抵消CO 2和其他温室气体对气候变化和全球变暖的不利影响。至关重要的是要认识到许多行业和公司在生成CO 2排放中发挥了重要作用。尽管如此,可以通过各种措施(包括前后的措施)减轻这种气体的浓度,从而减少其对环境的影响。因此,这项研究旨在探索和描述二氧化碳隔离的创新方法和策略,以减轻CO 2和其他温室气体对气候变化和全球变暖的不利影响。关键字:碳固存;气候变化; CO 2利用;温室气体排放;捕获CO 2的技术。简介