玻璃和相应的晶体通常具有相似的局部顺序和可比的特性。我们通过量化化学键来解释这些相似之处。使用量子化学键合描述符(电子在原子之间转移和共享的电子),我们证明在诸如SIO 2,GESE 2和GESE之类的普通玻璃中,玻璃中的化学键合,相应的晶体几乎没有差异。相反,对于仅在图的不同区域中发现的晶体,由两个粘结描述符跨越,获得了非常规的玻璃,在局部顺序和光学特性上都不同。该区域包含Gete,SB 2 TE 3和GESB 2 TE 4的晶体,这些晶体采用了元键合。因此,我们可以通过识别那些采用特殊键的晶体来设计非常规的玻璃。
原子探针断层扫描通常用于以原子分辨率表征固体中的元素分布。本文回顾并讨论了该技术局部探测化学键的潜力。两个过程表征了激光辅助场发射中的键断裂,分子离子概率 (PMI),即分子离子蒸发而不是单个(原子)离子的概率,以及多重事件概率 (PME),即在激光或电压脉冲激发下相关场蒸发多个碎片。本文证明了可以根据键断裂(即 PME 和 PMI 值)清楚地区分具有金属键、共价键和亚价键的固体。这些发现为理解和设计先进材料开辟了新途径,因为它们允许在纳米尺度上量化固体中的键,正如将在几个示例中展示的那样。这些可能性甚至可以证明将当前方法称为键合探针断层扫描 (BPT)。
物质由一种或多种元素组成。在正常条件下,自然界中除了稀有气体外,没有其他元素以独立原子的形式存在。然而,一组原子被发现以具有特征性质的一种物质形式存在。这样的原子组被称为分子。显然,一定有某种力将这些组成原子保持在分子中。将不同化学物质中的各种成分(原子、离子等)保持在一起的吸引力称为化学键。由于化合物的形成是各种元素的原子以不同方式结合的结果,因此它引发了许多问题。为什么原子会结合?为什么只有某些组合是可能的?为什么有些原子会结合而其他某些原子不会结合?为什么分子具有确定的形状?为了回答这些问题,人们不时提出了不同的理论和概念。这些理论和概念包括 Kössel-Lewis 方法、价壳电子对排斥 (VSEPR) 理论、价键 (VB) 理论和分子轨道 (MO) 理论。各种价态理论的演变和对化学键性质的解释与对原子结构、元素电子排布和周期表的理解的发展密切相关。每个系统都趋向于更稳定,而键合是自然界降低系统能量以达到稳定的方式。