塑料对现代社会的运作变得至关重要,但它们也带来了巨大的废物积累,资源枯竭和生态挑战。对于减轻这些影响的范式是塑料的可持续和循环管理是必要的。旨在提高可回收塑料的数量和质量的研究量迅速扩展。1 - 8个回收技术和废物回收基础设施(即收集和排序)是这种过渡的关键,9然而,可以评估和比较不同选项的方法是新生和不一致的。历史上,绿色化学的ELD一直依赖于基本的过程规定的指标,例如环境因素和能源经济系数。10
通过这项研究,我们试图提高人们对化学降解技术对塑料废物回收潜力的理解,并为开发创新解决方案铺平道路,以解决塑料污染危机。通过利用塑料废物的固有特性来产生增值材料,我们可以采取更可持续和循环的塑料废物管理方法,同时解决环境挑战并促进经济增长。塑料具有独特的物理特性,在制造任何产品时必须考虑这些特性。
蛋白质的水平和亚细胞定位调节着许多细胞过程的关键方面,并可成为治疗干预的目标。然而,目前还没有高通量方法来发现通过在区室之间穿梭、结合更大的复合物或定位到不同的无膜细胞器而改变定位的蛋白质。在这里,我们描述了一种可扩展的策略来表征不同扰动对蛋白质定位和水平的影响。我们使用基于 CRISPR-Cas9 的内含子标记来生成从内源启动子表达数百种 GFP 融合蛋白的细胞池,并通过延时显微镜监测定位变化,然后使用原位测序进行克隆识别。我们表明,这种策略可以表征细胞对药物治疗的反应,从而识别非经典效应,如蛋白质 - 蛋白质相互作用的调节、凝聚物形成和化学降解。
摘要:本文描述了暴露于紫外线辐射和/或冷凝下的 IM7/997 碳纤维增强环氧树脂的降解情况。根据对物理和化学降解的观察,已确定这些环境以协同方式起作用,导致环氧树脂基质大量侵蚀,从而导致机械性能下降。基质主导性能受到的影响最大,在仅经过 1000 小时的紫外线辐射和冷凝循环暴露后,横向拉伸强度就下降了 29%。虽然在研究的暴露时间内纵向纤维主导性能不受影响,但已注意到,大量的基质侵蚀最终会限制有效载荷传递到增强纤维,并导致甚至沿纤维主导材料方向的机械性能下降。
塑料废物的连续积累是人类活动在地球上最大的环境后果之一,需要紧急解决。许多在工业和学术界的研究人员都对化学回收塑料废物表示了值得称赞的效果,主要集中于聚元和多植物,因为这些量代表了最大的体积。然而,另一种重要的合成聚合物,即聚乙烯和硅酮,已经逃脱出了焦点。因此,需要进行文献综述,以介绍其化学降解中最新的学术和工业进步。本综述中总结的研究旨在实现联合国可持续发展目标:负责任的消费和生产,可持续城市和社区,水下的生活,土地上的生活和气候行动。
固体脂质纳米粒 (SLN) 已成为一种卓越的药物输送纳米胶体系统。本综述介绍了有关 SLN 各个方面的当代信息,即 SLN 形态、结构特征、制备方法及其特性。这种载体系统可以提高几类药物的治疗效果。SLN 目前的用途包括癌症治疗、传染病、糖尿病、中枢神经系统疾病、心血管疾病、药妆等。SLN 有助于改善药代动力学并改变药物释放。表面改性的前景、增强对各种生物屏障的渗透性、抵抗化学降解的能力以及同时封装两种或多种治疗剂的可能性已引起人们对 SLN 的普遍关注。同时,本综述强调了与该载体系统相关的最新研究趋势。
解决碳纤维增强热塑性塑料的废物管理时,我们回顾了不同的回收路线,强调了碳纤维增强的聚醚酮(CF-PEEK)的机械回收途径。CF-PEEK最有前途的方案是机械粉刺,其次是长纤维增强的热塑性压缩成型。主要原因是成本效益和较低的环境影响,因为它保留了有价值的矩阵,同时具有良好的机械性能。在本文中,我们总体上讨论了机械回收途径,然后专注于压缩成型步骤。此外,我们探讨了对机械性能的影响,以洞悉机械回收CF-PEEK的潜在应用领域。我们还回顾了压缩成型过程中CF-Peek化学降解对回收酸盐整体性能的影响。理解回收过程中纤维,基质和纤维矩阵界面的机制和变化对于优化过程和最大化回收周期的数量至关重要。
摘要:二价化学降解剂提供了一种选择性降解疾病相关蛋白的催化途径。通过将靶标特异性配体与 E3 泛素连接酶募集配体连接,这些化合物可促进靶标蛋白的泛素化和蛋白酶体降解。由于这种多步骤机制的复杂性,有效降解分子的开发仍然是一个困难、漫长且不可预测的过程。由于降解剂是大型异双功能分子,这些化合物的效率可能受到较差的细胞通透性限制,目前还缺乏一种有效可靠的方法来量化这些化合物的细胞通透性。本文中,我们证明通过在 BRD4 特异性降解剂 MZ1 上添加氯烷标签,可以通过氯烷渗透试验来量化细胞通透性。通过将此分析扩展到降解剂分子的各个成分,我们获得了结构 - 渗透性关系,这将为未来降解剂的开发提供参考,特别是当降解剂作为潜在治疗方法进入临床时。
金属卤化物钙钛矿有可能促进可再生能源需求,作为高效率,低成本的光伏替代品。最初的功率转换效率非常出色,但是需要改进钙钛矿的操作稳定性,以实现广泛的部署。机械应力是一个重要但经常被误解的因素影响钙钛矿热循环期间化学降解和可靠性。在本手稿中,我们发现基于钙钛矿和底物之间的热膨胀系数(CTE)不匹配的常用方程未能准确预测基于溶液的膜形成后的残余应力。例如,尽管CTE相似,但狭窄的带隙“ SNPB Perovskite” CS 0.25 fa 0.75 sn 0.75 sn 0.5 pb 0.5 i 3和“三重阳离子钙钛矿” cs 0.05 ma 0.16 ma 0.16 fa 0.79 pb(i 0.83 br 0.17)3。使用原位吸光度和底物曲率测量的组合来证明退火前的部分附着可以减轻残留应力并解释钙钛矿中的巨大应激变化。
• 扩大粉末合成工艺,以生产具有所需成分和化学性质的 50g 电解质和电极材料。 • 使用纳米烧结助剂在低温(<1400°C)下合成致密质子传导电解质,并鉴定质子、氧离子和电子电导率 • 使用我们开发的电解质和电极材料成功制造 H-SOEC 纽扣电池。 • 设计实验设置并利用先进的表征技术。已经建立了在实际蒸汽电解下运行的结构和化学降解机制。 • 研究了高蒸汽和 Cr/Si 蒸汽下选定电极的性能退化,并根据特性和结果提出了机械模型 • 已经研究了缓解电池性能的方法。已经发现低成本的吸气剂可以捕获痕量污染物并防止电极退化。 • 研究生接受了实验方法和分析工具方面的培训。博士后研究员和本科生也在学习 SOEC 技术、质子传导氧化物化学。 • 有效利用了 EMN 网络和 NREL、INL 和 PNNL 的核心实验和计算能力。预算期 2 和 Go/No-Go 决策的总体计划目标 (M4-1 和 GNG-BP1) 已经实现。