摘要:随着气候变化的影响,环境化学的变化很大,从而影响了大气,水圈和岩石圈的化学过程。本综述通过检查大气化学,水化学,土壤化学和生物地球化学周期的变化来评估这一点。全球温度升高和温室气体排放的增加已改变了大气化学反应,导致空气质量的改变和二次污染物的形成。由于气候变化引起的水温变化和水化学变化,通过海洋酸化影响了海洋生物地球化学。养分循环,土壤有机物和金属迁移率也因土壤化学效应而改变。此外,综述着重于缓解和适应策略,涉及绿色技术和可持续实践来管理气候变化影响。在此分析中,环境化学被强调是通过综合当前研究工作在理解气候变化挑战中发挥重要作用。结束还建议进行进一步的研究,同时建议跨学科方法以及需要长期监测,以提高我们对气候变化影响的了解,并使政策制定者能够做出明智的决策。关键字:环境化学,海洋生物地球化学,土壤碳固化,绿色化学创新,生态毒理学效应。
此预印本版的版权持有人于2025年2月10日发布。 https://doi.org/10.1101/2025.02.08.25321747 doi:medrxiv preprint
结果和讨论:我们的模型的精度为86.82%,具有高灵敏度(89.91%)和特异性(83.73%)。有利的栗子栖息地与较湿的区域有关,其中包括与年度和季节性降水,最冷的季度温度,土壤pH和年平均温度相关的因素。栗树的最佳条件包括超过800毫米/年的降水量,平均温度在10-15°C范围内。未来的预测表明,栗子的潜在栖息地损失和净初级生产力的略有变化。出处地区表现出不同程度的韧性,地中海地区特别脆弱。我们强调需要制定缓解策略,以面对与气候变化有关的威胁,以促进栗子的弹性。
这篇荣誉学院论文由 Aquila Digital Community 的荣誉学院免费提供给您,供您开放访问。它已被 Aquila Digital Community 的授权管理员接受并纳入荣誉论文。如需更多信息,请联系 Joshua.Cromwell@usm.edu、Jennie.Vance@usm.edu。
1 geology laboratory, CNRS UMR 8538, École Normale Supérieure, PSL University, IPSL, Paris, France 2 CNRM, University of Toulouse, Météo-France, CNRS UMR 3589, Toulouse, France 3 Water, Environment, Division Processs and Analyzes, BRGM-FRENCH Geological Survey, Orléans, France
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要背景:局部晚期乳腺癌是对新辅助化学疗法(NACT)和生存的反应。目前无法准确预测谁将从特定类型的NACT中受益。DNA甲基化是一种表观遗传机制,已知在调节基因表达中起重要作用,并且可以作为治疗反应和生存的生物标志物。我们调查了DNA甲基化作为乳腺癌NACT后长期生存(> 5年)的预后标记的潜在作用。方法:使用Illumina Human-Methylation 450 Beadchip研究了来自83例局部晚期乳腺癌女性的83名局部晚期乳腺癌女性的DNA甲基化谱(n = 55)和治疗后(n = 75)活检。患者接受了硬纤维素和/或紫杉醇的新辅助治疗。线性混合模型分别基于对NACT(部分反应或稳定疾病)和5年生存的临床反应,将DNA甲基化与治疗反应和生存相关。进行了基于统计学意义的甲基化位点来确定风险评分,并使用Kaplan-Meier曲线分析使用十年的生存后续数据来估算生存率。我们发现队列中发展的风险评分在独立验证队列中得到了验证,该验证队列由来自85名局部晚期乳腺癌女性的配对前治疗和治疗后活检组成。验证队列中包括的患者用阿霉素或5-FU和丝裂霉素NACT治疗。验证队列中包括的患者用阿霉素或5-FU和丝裂霉素NACT治疗。结果:在5年幸存者的NACT中,DNA甲基化模式在非生存者中没有发生变化,而在非生存者中未观察到显着变化或与治疗反应有关。DNA甲基化的变化包括CPG岛上甲基化的总体丧失以及非CPG岛中甲基化的增益,这些变化影响了与转录因子活性,细胞粘附和免疫功能相关的基因。基于四个甲基化位点开发了风险评分,这些甲基化位点成功地预测了我们的队列中的长期生存(p = 0.0034)和不可用验证的同类群体(p = 0.049)。
确保材料的耐久性不仅与降低维护成本或避免结构设备故障有关。事实上,延长材料的使用寿命也应被视为减少对环境影响的方法之一,通过降低新产品的原材料和能源消耗。鉴于蓝色经济及其相关的多样化海洋活动的巨大潜力,与海洋环境的恶劣性有关的新挑战已经出现 [1,2]。同时,对传统防腐技术造成的海洋污染和生态威胁的担忧促使人们需要开发新的环保型防腐解决方案 [3 – 6]。在过去的几十年里,人们认识到微生物可以以有利的方式影响腐蚀行为,即所谓的 MICI(微生物影响的腐蚀抑制),对新兴的微生物技术进行了研究,开辟了不同的研究方向 [4,7 – 12]。微生物腐蚀抑制(MICI)的机制比传统保护策略的机制更为复杂,但尽管研究仍在
简介:线粒体是心脏的中央能量发生器,通过氧化磷酸化 (OXPHOS) 系统产生三磷酸腺苷 (ATP)。然而,线粒体还指导关键细胞决策和对环境压力源的反应。方法:本研究评估了长期电磁压力是否会影响线粒体 OXPHOS 系统和心肌的结构改变。为了诱发长期电磁压力,小鼠暴露于 915 MHz 电磁场 (EMF) 28 天。结果:对暴露于 EMF 的小鼠的线粒体 OXPHOS 容量的分析表明,复合物 I、II、III 和 IV 亚基的心脏蛋白表达显著增加,而 ATP 合酶 (复合物 V) 的 α 亚基的表达水平在各组之间保持稳定。此外,使用 Seahorse XF24 分析仪测量分离的心脏线粒体的呼吸功能表明,长时间的电磁应力会改变线粒体的呼吸能力。然而,与对照组相比,暴露于 EMF 的小鼠血浆中丙二醛(氧化应激指标)的水平和心肌线粒体驻留抗氧化酶超氧化物歧化酶 2 的表达保持不变。在左心室的结构和功能状态下,在受到电磁应力的小鼠的心脏中未发现任何异常。讨论:总之,这些数据表明长时间暴露于 EMF 可能通过调节心脏 OXPHOS 系统影响线粒体的氧化代谢。
Nomenclature AR5 – The 5th Assessment Report of IPCC CCRR – Center for Climate and Resilience Research EC – Energy Consumption GBS – Green Building Studio GHG – Greenhouse Gases HDD15°C – heating degree-days with base temperature 15°C IPCC – Intergovernmental Panel on Climate Change MM5 – Mesoscale Meteorological Model Version 5 OGUC – General Ordinance of Urban Planning and Housing of智利RCP住房和城市发展部 - IPCC RF TOT的代表性浓度途径 - OGUC SRES的总辐射强迫RT - 热调节应用手册 - IPCC U-Value排放场景的特别报告 - 热传递 - 热透态 - [W/M 2·K] 1