哺乳动物的视觉系统由平行的分层专业途径组成。不同的途径在使用更适合支持特定下游行为的表示形式方面是专门的。在特定的情况下,最清楚的例子是视觉皮层的腹侧(“ What what”)和背(“ Where”)途径的专业化。这两种途径分别支持与视觉识别和运动有关的行为。至今,深度神经网络主要用作腹侧识别途径的模型。但是,尚不清楚是否可以使用单个深ANN对两种途径进行建模。在这里,我们询问具有单个损失函数的单个模型是否可以捕获腹侧和背途径的特性。我们使用与其他哺乳动物一样的小鼠的数据探讨了这个问题,这些途径似乎支持识别和运动行为。我们表明,当我们使用自我监督的预测损失函数训练深层神经网络体系结构时,我们可以在拟合鼠标视觉皮层的其他模型中胜过其他模型。此外,我们可以对背侧和腹侧通路进行建模。这些结果表明,应用于平行途径体系结构的自我监督的预测学习方法可以解释哺乳动物视觉系统中看到的一些功能专业。
纳赛尔·赛迪(Nasser Saidi)博士的文章题为“海湾新绿色交易的案件”,出现在2020年10月发行的Aspenia第89-90期中,并在下面发布。可以在此处下载文章的PDF文件。在海湾新绿色交易的案件中,世界处于“新石油正常”状态,价格永久性降低。海湾富有石油的国家需要多样化并专注于清洁能源的替代品。欧洲在这里也可以发挥重要作用,因为欧盟和海湾合作委员会应该建立战略技术 - 能源合作伙伴关系。海湾合作委员会(GCC)正在通过两次重大冲击进行编织。covid-19和巨大的锁定导致石油价格崩溃,在气候变化和全球能源过渡的背景下。IMF今年的全球增长率估计下降了4.9%,在2020-21期间,累计产出损失将超过12万亿美元。在海湾合作委员会内,预计2020年的增长将在2020年缩小7.1%,乐观地
摘要 — 尽管目前已有研究,但运动想象 (MI) 任务中产生的事件相关去同步 (ERD) 的变异性与 MI-BCI 性能之间的关系仍未得到很好的理解。事实上,之前的许多研究表明,ERD 模式在受试者之间和受试者内存在很大的变异性,但仍然难以理解这种变异的起源。缺乏对大脑运动模式变异性的了解限制了提高 BCI 性能的可能性,BCI 的性能平均仍然很差。我们认为,更好地了解 BCI 使用过程中 ERD 的变异性对于开发有效的接口至关重要。事实上,大多数研究都忽视了对 MI 期间试验间 ERD 及其整个实验会话期间的变异性的分析,这些研究主要集中于识别跨试验平均甚至跨参与者的 ERD 模式。在本研究中,我们计划分析大型 MI-BCI 数据库(n=75 名受试者),并研究右手和左手 MIs 任务(即 ERD)背后的大脑运动模式的个体间/个体内变异性与 BCI 性能之间的关系。我们的研究表明,尽管 ERD 幅度和基线功率与 BCI 性能相关,但 ERD 幅度或基线功率的变异性却无关。索引术语 — 运动意象;脑机接口;脑电图;变异性
摘要 - 许多研究表明,可以从脑电图数据中解码听觉对自然语音的关注。但是,大多数研究都集中在选择性的听觉注意力解码(SAAD)上,而竞争扬声器则是对单个目标的绝对听觉注意解码(AAAD)的动态。AAAD的目标是衡量对单个演讲者的关注程度,在心理和教育环境中的客观衡量注意力。为了调查这种AAAD范式,我们设计了一个实验,主题在不同的细心条件下听到视频讲座。我们训练了神经解码器,以在基线的细节状态重建脑电图中的语音信封,并使用解码和真实语音信封之间的相关系数作为注意语音的指标。我们的分析表明,1-4 Hz频段中语音包膜的包络标准偏差(SD)与该指标在语音刺激的不同段之间密切相关。然而,这种相关性在0.1-4 Hz频段中削弱,其中专注状态和注意力不集中的状态之间的分离程度变得更加明显。这突出了0.1-1 Hz范围的独特贡献,从而增强了注意状态的区别,并且仍然受到混杂因素的影响,例如语音信封的时变动态范围。
▪在整个校园内都对加热设置/日历进行了调整。▪我们继续增加有关员工会议的视频会议,以减少站点之间旅行的需求。▪尽可能将在线学习和远程学习用于员工CPD。▪尽可能使用汽车共享和火车旅行。▪在进行新的建筑项目时,我们会咨询外部专业人员,以确保纳入最节能的实践。▪所有灯光失败时,都将被LED替换。▪任何新建筑物都装有节能加热系统(热恢复)和自动LED照明。▪正在研究太阳能。▪已安装了新的锅炉和加热系统,并取出了加油系统。
Bertelkamp Automation结合了我们在机器视觉和最先进的视觉实验室中的丰富经验,以帮助您充满信心,以推动项目前进。我们的应用工程师团队可以为您提供实际数据,以确定视力指导,检查,自动标识或计量应用程序的可行性。我们利用了各种可用的灯光,镜头,2D或3D视觉系统和软件来执行这些可行性研究。
MAPT cg01934064 17 44064242 船体搁板 -0.14 0.024 MAPT cg15323584 17 44022846 5'UTR 搁板 0.11 0.009 MAPT cg17569492 17 44026659 5'UTR 岛 0.09 0.019 MAPT cg12727978 17 44075500 船体露天海域 0.08 0.009 TREM2 cg02828883 6 41131823 TSS1500 露天海域 0.08 0.005 TIA1 cg14434028 2 70452453 船体露天海域 0.08 0.036 TIA1 cg13119546 2 70444039 身体 opensea 0.05 0.041 RUNX2 cg16181497 6 45409732 身体 opensea -0.07 0.042 RUNX2 cg12755953 6 45430813 身体 opensea 0.06 0.039 RUNX2 cg04110902 6 45500999 身体 opensea 0.05 0.038 GRN cg06800040 17 42427647 身体 shelf 0.07 0.022 FTLD1m 按亚型分类:TDP Type A C9orf72 vs CTRL MAPT cg15323584 17 44022846 5'UTR shelf 0.17 0.002 MAPT cg12727978 17 44075500 船体 开海 0.15 0.001 MAPT cg17569492 17 44026659 5'UTR 岛 0.1 0.032 MAPT cg19276540 17 44060353 船体 岛 0.08 0.035 RUNX2 cg12041069 6 45341222 船体 搁板 0.15 0.04 RUNX2 cg17636752 6 45391973 船体 岸 0.09 0.036 RUNX2 cg12755953 6 45430813 船体 开海 0.08 0.026 TIA1 cg14434028 2 70452453 身体 开放海 0.13 0.011 TIA1 cg13119546 2 70444039 身体 开放海 0.06 0.047 TIA1 cg15836561 2 70442511 ExonBnd 开放海 0.06 0.028 TBK1 cg23175599 12 64848891 5'UTR 架 0.1 0.026 TREM2 cg02828883 6 41131823 TSS1500 开放海 0.09 0.017 CCNF cg26647200 16 2482775 身体 架 0.09 0.022 GRN cg06800040 17 42427647 车身搁板 0.08 0.031 GRN cg12837296 17 42426483 5'UTR 开海 0.07 0.033 GRN cg23570245 17 42426011 5'UTR 开海 0.06 0.048 GRN cg08491241 17 42421960 TSS1500 开海 0.06 0.05 SQSTM1 cg05578452 5 179255653 车身开海 0.07 0.005 SQSTM1 cg09046399 5 179264098 3'UTR 开海 0.06 0.025 FTLD1m 亚型:TDP C 型 vs CTRL MAPT cg01934064 17 44064242 船体架 -0.16 0.016 MAPT cg17569492 17 44026659 5'UTR 岛 0.08 0.045 MAPT cg26979107 17 44061355 船体岸 0.06 0.016 MAPT cg22635938 17 44039549 5'UTR 公海 -0.06 0.012 MAPT cg01582587 17 44036817 5'UTR 公海 0.05 0.022 TBK1 cg09999583 12 64878162 船体公海-0.1 0.029 TREM2 cg02828883 6 41131823 TSS1500 公海 0.08 0.009
简介高级别胶质瘤 (HGG) 是一种中枢神经系统恶性肿瘤,在成人和儿童中均有发生(1、2)。WHO 将 HGG 归类为 3 级和 4 级肿瘤,其特征是细胞过多、细胞核异形性、微血管增生和中心坏死(3-5)。HGG 在成人中更为常见,超过一半 (60%) 的胶质瘤被诊断为 HGG,而儿童中只有大约 10%-15% 的中枢神经系统肿瘤被诊断为 HGG,而低级别胶质瘤更为常见(6-8)。治疗包括手术、放疗和化疗相结合的多模式方案。然而,这些治疗无效,不到 20% 的患者在诊断后 5 年内存活(9-11)。因此,迫切需要寻找这种毁灭性疾病的创新疗法并改善生存结果。
TDK 企业在 2025 年 CES 上为人工智能新时代铺平道路 ● TDK 将 AI、绿色转型和数字化转型确定为未来十年的大趋势 ● 关键发展包括用于节能 AI 计算的“自旋忆阻器”和集成边缘传感、组件和 AI 功能的工业 4.0 解决方案的 TDK SensEI 的形成 ● 为汽车、工业、能源和 ICT 领域提供尖端解决方案 ● 战略合作伙伴关系包括与 NEOM McLaren Formula E 车队在赛车创新方面的技术合作,以及即将发布的视障人士无障碍产品 2024 年 12 月 10 日 TDK 公司 (TSE: 6762) 将于 2025 年 1 月 7 日至 12 日在内华达州拉斯维加斯举行的年度消费电子展 (CES) 上展出。总部位于东京的 TDK 公司是智能社会电子解决方案的全球领导者之一,正在拥抱人工智能的崛起。预计未来十年该领域将快速增长,因此该公司正在制定创新和业务战略,以充分利用人工智能的潜力。TDK 还强调绿色转型和持续数字化是塑造其未来重点的关键全球趋势。在拉斯维加斯会议中心中央大厅的 15815 号展位上,TDK 展示了其新制定的长期愿景“TDK 转型:加速转型,实现可持续未来”。通过其创新产品,TDK 致力于推动技术进步并促进有意义的社会转型。为了实现这一目标,TDK 不断突破创新的界限,专注于先进材料、尖端制造工艺以及提高客户应用中的产品性能。人工智能已经改变了日常生活的许多方面,并将继续影响行业、自动化和技术。TDK 的解决方案旨在解决人工智能应用面临的关键挑战,例如高功耗,从而实现更高效和更广泛的使用。通过结合传感器融合、先进组件、软件和人工智能,TDK 能够推动创新并改变其主要市场,包括汽车、工业和能源以及 ICT。关键行业的变革性解决方案 ● 汽车:TDK 为电动汽车和高级驾驶辅助系统 (ADAS) 提供广泛的尖端解决方案组合。该公司的全面展示展示了其全系列的组件和传感器技术,特别强调了其 6 轴 IMU 和压电 MEMS 镜技术。 ● 工业和能源:TDK 的集成方法结合了人工智能、传感器融合和先进组件,以推动环境可持续性发展并应对关键的工业挑战,优化能源效率,提高生产力并促进可持续实践。值得关注的创新包括其柔性薄膜压电传感器解决方案和超声波飞行时间传感器。● ICT:TDK 将展示旨在实现更智能、更可靠、更环保的通信系统的解决方案,包括先进的高精度定位传感器和用于直接视网膜投影的超紧凑全彩激光模块,这些技术有望彻底改变增强和虚拟现实体验。