摘要 — 定向灰盒模糊测试 (DGF) 可以通过寻求到达程序位置或按顺序探索某些位置来快速发现或重现程序中的错误。然而,由于其静态阶段划分和粗粒度的能量调度,以前的 DGF 工具在面对多个目标位置(简称目标)时表现不佳。在本文中,我们提出了多目标定向灰盒模糊测试,旨在在模糊测试活动中到达多个程序位置。具体而言,我们提出了一种新颖的策略来自适应地协调探索和利用阶段,以及一种新颖的能量调度策略,通过考虑种子和目标位置之间的更多关系。我们在一个名为 LeoFuzz 的工具中实现了我们的方法,并在崩溃重现、真正验证和实际程序中的漏洞暴露方面对其进行了评估。实验结果表明,LeoFuzz 在有效性和效率方面优于六种最先进的模糊测试器,即 QYSM、AFLGo、Lolly、Berry、Beacon 和 WindRanger。此外,LeoFuzz 在实际程序中检测到 23 个新漏洞,其中 11 个已分配 CVE ID。
“基因敲除”或“敲除”是一种使基因功能失活的突变。这些突变对于经典的遗传研究以及包括功能基因组学在内的现代技术非常有用。过去,细菌基因的敲除通常是通过转座子诱变做出的。在这种情况下,需要费力的屏幕才能找到感兴趣的基因的淘汰赛。传统上,首先使用体外基因工程来修改质粒或细菌性人工染色体(BAC)的基因,然后将这些修饰的构建体移至细胞培养技术感兴趣的生物。利用基因工程和体内同源重组的组合的其他方法充其量效率低下。重新组合提供了一种直接在细菌染色体上产生基因敲除突变的新方法,或者将体内任何质粒或BAC修改为在其他生物体中敲除的前奏。构造设计为基础对,
然而,快速数字化给东南亚带来了独特而新颖的挑战。技术和技术支持的商业模式的创新速度超过了响应性监管框架的建立速度。数字消费者,尤其是首次上网的消费者,面临着受到新兴技术意想不到的后果的风险。长期存在的、为模拟世界而制定的监管框架和法律往往不适合监管新的数字现实。此外,政府面临的挑战是不要过度监管技术,以免扼杀其成为增长动力的潜力。对于监管机构来说,在快速数字化转型的背景下,平衡创新与保障社会福利至关重要。
RS232-MDB (PC2MDB) 和 MDB-USB 均用于将 PC 或任何其他 RS232 设备连接到 MDB 接口自动售货机。Pi2MDB 用于将 Raspberry pi 板连接到自动售货机。并且可以通过 RS232、USB 设备或 Raspberry pi 轻松与 MDB 接口自动售货机集成。这些适配器将自动回复 VMC Poll 命令,因此用户无需考虑 Poll 命令。除轮询命令之外,来自 VMC 的任何数据都将被重定向到 RS232 端口。此外,这些 MDB 适配器将处理与 VMC 的所有开机或复位数据通信。如果您想将任何数据将 HEX 数据发送到 VMC,只需与校验和一起发送到适配器盒,然后适配器盒将在 VMC 轮询请求期间发送到 VMC。因此,用户只需要在 PC 软件开发期间熟悉与 VMC 的自动售货会话。并且用户应该仔细阅读 MDB 协议以完成测试和开发。
摘要:Carla模拟器(学习行动)是测试算法并在自主驾驶领域生成数据集(AD)的强大平台。它提供了对各种环境参数的控制,从而可以进行彻底的评估。开发边界框通常是深度学习中通常使用的工具,并且在广告应用中起着至关重要的作用。使用边界盒识别和描述感兴趣的对象(例如车辆),用于识别和描述感兴趣的对象的主要方法。卡拉中的操作需要捕获地图上所有对象的坐标,随后与传感器的坐标系在自我车辆的坐标系统中,然后将相对于自我车辆的透视图包装在边界框中。但是,这种主要方法遇到了与对象检测和边界框注释相关的挑战,例如幽灵盒。尽管这些程序通常可以有效地检测其直接视线内的车辆和其他物体,但它们也可以通过识别被障碍物掩盖的物体来产生误报。我们已经增强了主要方法,目的是滤除不需要的盒子。绩效分析表明,改进的方法已经达到了很高的精度。
应变,按下尽可能多的液体。您应该有大约1汤匙液体。使用前冷却5分钟。为贝尔纳斯酱,将黄油轻轻融化在锅中。站立30秒钟,直到乳白色固体定居在底部。倒出175克澄清的黄油,丢弃剩下的乳白色。热时在此食谱中使用。将蛋黄,注入醋和盐放入一个高大的狭窄容器中,搅拌器棒一直适合底部。短暂闪电战。将棒搅拌器高高地慢慢淋上澄清的黄油,大约一分钟。添加了所有黄油后,闪电队再闪电10秒钟,上下移动棍子。调整一致性,加入1汤匙水,然后闪电以掺入。根据需要添加更多的水,一次每次1茶匙,直到贝尔纳斯酱是浓而柔软的酱汁,而不是流鼻涕。搅拌龙龙和cher。立即使用或在温暖的地方保持温暖,直到需要。
通过使用轮廓化工具容器,可以快速盘点和记录工具。所有工具都有单独的轮廓化位置,突出显示丢失的工具。这些容器称为“阴影盒”。工具的阴影(轮廓)标识了工具所属的位置。TCP 基于即时盘点概念,部分通过使用阴影盒来实现。参见图 1-1。在无法使用轮廓化的容器上,会附上一份清单说明和容器图纸。这两种系统都使工作中心主管或检查员能够快速确保在维护操作后已检索到所有工具。
定向灰盒模糊测试可以引导模糊器探索特定的目标代码区域,在补丁测试等场景中取得了良好的效果。然而,如果有多个目标代码需要探索,现有的定向灰盒模糊测试器(如AFLGo和Hawkeye)往往会忽略一些目标,因为它们使用距离的调和平均值,倾向于测试可达路径较短的目标。此外,现有的定向灰盒模糊测试器由于程序中存在间接调用,无法计算出准确的距离。此外,现有的定向灰盒模糊测试器无法解决探索和利用问题,种子调度效率低下。针对这些问题,我们提出了一种动态种子距离计算方案,当可达路径遇到间接调用时,动态增加种子距离。此外,种子距离计算可以处理多目标场景下的偏差问题。利用种子距离计算方法,我们提出了一种基于置信上限算法的种子调度算法,以解决定向灰盒模糊测试中的探索和利用问题。我们实现了一个原型 RLTG,并在实际程序上对其进行了评估。原型评估表明,我们的方法优于最先进的定向模糊器 AFLGo。在多目标基准测试 Magma 上,RLTG 以 6.9 倍的速度重现错误,并且比 AFLGo 多发现 66.7% 的错误。
从创新中心和政策实验到监管沙盒数字技术有望通过支持创新、前瞻性的政策和数字政府解决方案来加速可持续发展。然而,这些机遇也带来了许多前沿技术的风险和复杂性,以及与包容性、竞争、隐私和安全相关的政策和监管挑战。创新中心、孵化器、加速器或试验台已成为新技术的跳板,现在在许多发达国家和发展中国家都很常见。然而,在某些情况下,公共部门创新失败的已知风险和成本意味着政策制定者和监管者可能仍然倾向于维持现状。近年来,一些国家出现了沙盒和实验等相对较新的方法,事实证明,这些方法可有效创造一个更有利、更受约束的空间。在这种空间中,政府可以与私营部门和其他相关利益攸关方合作,在受控空间中用小样本群体测试技术,然后再大规模推出,从而大幅降低成本,并限制失败和负面影响的可能性。图1说明了创新、实验和沙盒的各种机构方法。一些国家已经通过公私合作伙伴关系(PPP)或多利益攸关方合作伙伴关系(MSP)为使用沙盒建立了机构、政策或监管框架。例如,英国金融行为监管局(FCA)建立了监管沙盒,以实现更高效的中小企业(SME)贷款,并支持金融部门数字身份的发展,特别针对消费者和中小企业1。在新加坡,能源市场管理局 (EMA) 为能源行业实施了监管沙盒,主要关注电力和天然气领域的创新,旨在为未来的可再生能源寻找创新解决方案 2。在哈萨克斯坦,