由副教授Poh Chueh Loo(右)领导的研究团队将开拓创新的“生物相机”的开发,该创新“生物相机”通过活细胞及其生物学机制编码并记住数据。
[15] Watanabe Tomonori等人:低温工程39,553(2004)。[16] Iimi Akira等人:低温工程42,42(2007)。[17] A.P.Malozemoff和Y. Yamada:超导100年,第11章“第二代HTS Wire”,P689(CRC出版社,2011年)。和Izumi Teruro,Yanagi Nagato:血浆和核融合杂志93,222(2017)。大量的制造方法,包括兔子底物,mod(化学溶液方法)和真空蒸发方法。 [18] http:// www。istec。或。JP/Tape-Wire/Labo-Tape-Wire。html,使用PLD方法和MOD方法(化学溶液方法)的金属棒的高性质。[19] T. Haugan等。,自然430,867(2004)。[20] Y. Yamada等。,应用。物理。Lett。 87,132502(2005)。 [21] H. Tobita等。 ,超级条件。 SCI。 技术。 25,062002(2012)。 [22] Matsumoto Kaname:应用物理77,19(2008)。 [23] Yamada Shigeru:应用物理93,206(2024)。 [24] Y. Yamada,第36届国际超导性国际研讨会(ISS2023),Takina,新西兰惠灵顿,11月28日至30日,2023年。 [25] Miyata Noboru:材料37,361(1988)。 [26] https://www.t.u-tokyo.ac.jp/press/pr2023-06-28-001 [27] A. Stangl等。 ,科学。 Rep。11,8176(2021)。 [28] R. Hiwatari等。 ,血浆融合res。 14,1305047(2019)。 [29]在美国休斯顿大学申请2023年国际申请指挥的布兰登·索博姆(Brandon Sorbom)(2023年)。 [30] D. uglietti,超越。 SCI。 技术。 32,053001(2019)。Lett。87,132502(2005)。[21] H. Tobita等。,超级条件。SCI。 技术。 25,062002(2012)。 [22] Matsumoto Kaname:应用物理77,19(2008)。 [23] Yamada Shigeru:应用物理93,206(2024)。 [24] Y. Yamada,第36届国际超导性国际研讨会(ISS2023),Takina,新西兰惠灵顿,11月28日至30日,2023年。 [25] Miyata Noboru:材料37,361(1988)。 [26] https://www.t.u-tokyo.ac.jp/press/pr2023-06-28-001 [27] A. Stangl等。 ,科学。 Rep。11,8176(2021)。 [28] R. Hiwatari等。 ,血浆融合res。 14,1305047(2019)。 [29]在美国休斯顿大学申请2023年国际申请指挥的布兰登·索博姆(Brandon Sorbom)(2023年)。 [30] D. uglietti,超越。 SCI。 技术。 32,053001(2019)。SCI。技术。25,062002(2012)。[22] Matsumoto Kaname:应用物理77,19(2008)。[23] Yamada Shigeru:应用物理93,206(2024)。[24] Y. Yamada,第36届国际超导性国际研讨会(ISS2023),Takina,新西兰惠灵顿,11月28日至30日,2023年。[25] Miyata Noboru:材料37,361(1988)。[26] https://www.t.u-tokyo.ac.jp/press/pr2023-06-28-001 [27] A. Stangl等。,科学。Rep。11,8176(2021)。 [28] R. Hiwatari等。 ,血浆融合res。 14,1305047(2019)。 [29]在美国休斯顿大学申请2023年国际申请指挥的布兰登·索博姆(Brandon Sorbom)(2023年)。 [30] D. uglietti,超越。 SCI。 技术。 32,053001(2019)。Rep。11,8176(2021)。[28] R. Hiwatari等。,血浆融合res。14,1305047(2019)。[29]在美国休斯顿大学申请2023年国际申请指挥的布兰登·索博姆(Brandon Sorbom)(2023年)。[30] D. uglietti,超越。SCI。 技术。 32,053001(2019)。SCI。技术。32,053001(2019)。
(1)(Kokuken)日本科学技术局研究与发展战略中心,“战略建议:每个人的量子计算机”,2018年。 https:// wwwjst.go.jp/crds/pdf/2018/sp/crds-fy2018-sp-04.pdf(2)p.w.Shor,“用于量子计算的算法:离散日志和保理”,Proc第35届IEEE计算机科学序言研讨会,第124-134页,1994年。(3)L.K.Grover,“用于数据库搜索的快速量子机械算法”,第28 ACM计算理论座谈会论文集,第212-219页,1996年。(4)N。Kunihiro,“代理量计算机的计算时间的精确分析”,IEice Trans基础,第88-A卷,第105–111页,2005年。(5)M.A。nielsen和I.L.chuang,量子计算和量子信息,剑桥大学出版社,2000年。(6)A。Peruzzo,J。McClean,P。Shadbolt,M.-H周,P.J。Love,A。Aspuru-Guzik和J.L.O'Brien,“光子量子处理器上的变异特征值求解器”,《自然通信》,第5卷,第1期,2014年7月,第4213页(7)to奥利T.可逆计算,在:de bakker J.,van leeuwen J.(eds)自动机,语言和程序 - iCalp 1980,计算机Sci-Ence中的讲义,第85卷,Springer,柏林(8)Arxiv e-Prints,Quant-PH/9902 062,1999年2月。(9)K。Iwama,S。Yamashita和Y. Kambayashi,“设计基于CNOT的量子CUITS的跨形成规则”,设计自动化会议,第419-429-2002页,2002年。(10)Z. Sasanian和D.M.(12)M。Soeken,M。Roetteler,N。Wiebe和G.D. Micheli,“基于LUT的层次可逆逻辑Synthe-Sis”,IEEE TransMiller,“可逆和Quan-Tum电路优化:一种功能性方法”,《可使用的计算》第4个国际研讨会(RC 2012),第112-124页,2013年。((11)A。Mishchenko和M. Perkowski,“快速的启发式启发式最小化 - 独家及产品或产品”,第五届国际式Reed-Muller Workshop,pp.242–250,2001。计算。集成。电路系统,第38卷,第9期,第1675–1688页,2019年。((13)E。Souma和S. Yamashita,“同时分解许多MPMCT大门时,减少T计数”,第50届国际多重逻辑国际研讨会(IS- MVL 2020),第22-22-27页,11月2020年,((14)X. Zhou,D.W。 Leung和I.L.Chuang,“量子逻辑门结构的方法论”,物理。 修订版 A,第62卷,052316,2000年10月。 ((15)A。Barenco,C.H。 Bennett,R。Cleve,D.P。 Divincenzo,Chuang,“量子逻辑门结构的方法论”,物理。修订版A,第62卷,052316,2000年10月。((15)A。Barenco,C.H。Bennett,R。Cleve,D.P。 Divincenzo,Bennett,R。Cleve,D.P。Divincenzo,
近年来,随着新兴国家工业化进程加快、经济发展迅速,矿产资源需求不断增加,矿产资源可持续供给危机感不断增强,资源民族主义思潮回潮。引发资源供给结构变化,正处于重大变革时期。随着陆地资源日益枯竭,深海资源的勘探和采集研究正在快速进展。在日本的专属经济区和大陆架,已发现许多深海矿产资源潜力区,如含有金属和稀有元素的黑子型海底热液矿床、富钴结壳等。据估计,日本拥有世界最大的黑子型海底热液矿床潜在资源量,拥有仅次于美国的世界第二大富钴结壳潜在资源量。然而,如何将潜在有前景的海域缩小到具有资源吸引力的海域,这一方法尚未完全确立。此外,由于深海海底采矿技术刚刚起步,矿藏的勘探和开采活动仍处于起步阶段。因此,需要开发新的勘探技术并开发有效的采矿技术。此外,作为世界第三大经济体,日本强劲的工业活动和丰富的生活方式得益于其丰富的能源和资源储备,包括石油、天然气、铜和镍。换句话说,日本是世界上最大的能源和资源消费国之一。然而,日本自身的能源和资源并不多,目前大部分依赖从其他国家进口。此外,近年来,在亚洲经济高速增长的背景下,全球对这些资源和能源的需求急剧增加,日本确保稳定供应的难度加大。尤其是日本的石油、天然气、铜、镍等矿产资源几乎100%依赖海外,因此,海外资源竞争加剧、产地冲突、甚至经济形势的变化,供需环境的变化引起需求波动,使得资源价格长期呈上涨趋势,为资源价格波动创造了条件。随着人口向城市集中、老龄化导致的生活方式改变等原因,电气化不断推进,能源需求不断扩大,确保能源和资源对于改善人们的生活至关重要。因此,开发自己的海洋资源对日本来说极其重要。但对深海采矿车辆的实时监控研究较少,导致高效深海采矿变得困难。常规深海探测方法包括大地测量卫星遥感技术、船载声纳技术、自主水下机器人(AUV)巡航成像技术等,但这些方法难以实现实时探测,且存在易被篡改等问题。受环境影响较大,准确率较低。可见光成像系统的引入对于准确定位广阔海底的资源并有效收集至关重要。为此,我们开展了研究,利用先进的人工智能技术来克服这些问题。
引用本文: 种峻楷, 胡广超, 高建明, 霍向涛, 郭敏, 程芳琴, 张梅.面向未来“双碳”形势下低阶煤高值化利用研究进展与思考[J].北科 大:工程科学学报 , 优先发表.doi: 10.13374/j.issn2095-9389.2024.10.02.001 CHONG Junkai, HU Guangchao, GAO Jianming, HUO Xiangtao, GUO Min, CHENG Fangqin, ZHANG Mei.Research progress and new thoughts for high-value utilization of low-rank coal according to the future “dual-carbon” policy[J].Chinese Journal of Engineering , In press.doi: 10.13374/j.issn2095-9389.2024.10.02.001
脑肿瘤死亡率高,治疗选择有限,是全球重大健康问题。这些肿瘤是由脑内细胞异常生长引起的,大小和形状各异,因此,对于医疗专业人员来说,通过磁共振成像 (MRI) 扫描手动检测它们是一项主观且具有挑战性的任务,因此需要自动化解决方案。本研究探讨了深度学习(特别是 DenseNet 架构)自动化脑肿瘤分类的潜力,旨在提高临床应用的准确性和通用性。我们利用了 Figshare 脑肿瘤数据集,该数据集包含 233 名患者的 3,064 张 T1 加权增强 MRI 图像,这些患者患有三种常见肿瘤类型:脑膜瘤、神经胶质瘤和垂体瘤。使用来自 ImageNet 的迁移学习评估了四种预训练的深度学习模型——ResNet、EfficientNet、MobileNet 和 DenseNet。DenseNet 实现了最高的测试集准确率 96%,优于 ResNet(91%)、EfficientNet(91%)和 MobileNet(93%)。因此,我们专注于提高 DenseNet 的性能,同时将其视为基础模型。为了增强基础 DenseNet 模型的通用性,我们实施了一种微调方法,该方法采用了正则化技术,包括数据增强、dropout、批量归一化和全局平均池化,并结合了超参数优化。这种增强的 DenseNet 模型实现了 97.1% 的准确率。我们的研究结果证明了 DenseNet 结合迁移学习和微调对脑肿瘤分类的有效性,凸显了其在临床环境中提高诊断准确性和可靠性的潜力。
Shib Shankar Banerjee 1,#、Subhradeep Mandal 1、Injamamul Arief 1、Ramakanta Layek 2、Anik Kumar Ghosh 1、Ke Yang 3、Jayant Kumar 3、Petr Formanek 1、Andreas Fery 1、Gert Heinrich 1,4、Amit Das 1,5 * 1 德累斯顿莱布尼茨聚合物研究所 e。 V,Hohe Straße 6,德累斯顿,01069,德国 2 LUT 大学,拉赫蒂,Mukkulankatu 19,FI-15210,芬兰 3 马萨诸塞大学洛厄尔分校,先进材料中心,物理系,MA 01854,美国 4 德累斯顿工业大学,纺织机械和高性能材料技术研究所,Hohe Straße 6,德累斯顿,01069,德国 5 坦佩雷大学,工程与自然科学系,FI-33101,芬兰
ICR Consilium Chris Gardner, David Daley, Lindsey Neville Tel: +44 (0) 20 3709 5700 Email: arecor@consilium-comms.com Notes to Editors About Arecor Arecor Therapeutics plc is a globally focused biopharmaceutical company transforming patient care by bringing innovative medicines to market through the enhancement of existing therapeutic products.通过应用我们创新的专有技术平台Arestat™,我们正在开发糖尿病和其他指示中专有产品的内部投资组合,并与领先的药品和生物技术公司合作以提供治疗产品。Arestat™平台由广泛的专利组合支持。有关更多详细信息,请访问我们的网站www.arecor.com
