对在农业中使用微生物来改善粮食生产的需求不断增加,需要不断评估微生物多样性。本研究旨在研究个体和组合多功能微生物的生化特性,并确定生物技术或农业中的潜在应用。该实验包括29种治疗,有7种单一和21个合并的微生物:M01(Serratia marcescens),M02(M02(Bacillus toyonensis),M03(Phanerochaete Australis),M04(M04),M04(Trichoderma koningiopsis),M05(M05)),M07(芽孢杆菌),M08至M28(这些微生物之间的组合)和M29(对照 - 无微生物)。所有单一的和合并的处理都吸收了氮,产生了铁载体和吲哚乙酸和溶解的磷酸盐。仅处理M04,M13和M26产生HCN。 此外,除M03外,所有处理都会产生生物膜。 仅M03,M07,M09,M10,M12和M13溶解化钾。仅处理M04,M13和M26产生HCN。此外,除M03外,所有处理都会产生生物膜。仅M03,M07,M09,M10,M12和M13溶解化钾。仅M03,M07,M09,M10,M12和M13溶解化钾。
Nazeri,Gholam Hossein; Mastour,Ramin* +; Fayaznia,穆罕默德; Parviz高级材料研究中心Keyghobadi,P.O。 框16765-3574 Tehran,I.R。 伊朗摘要:使用-30°C的硫酸和硝酸混合物进行硫氨酸钾的硝化。 以硫酸与硝酸的摩尔比(1:3.5)优化了反应时间。 通过将钾变成硫铵的钾产量差异。 发现产品的产率和纯度都从磺胺钾开始。 关键词:硫钾钾,二硝基酸,硝酸,二硝基铵,二硝基钾。 引言Dinitramide Salts是一种独特的氮气氧,于1988年首次发现[1,2]。 二硝酰胺盐具有较高的氧气含量,并在不同的柜台上制备,包括铯,铵和肼盐。 二硝基胺阴离子的弹药盐(NH 4 N(NO 2)2)或ADN比硝酸铵具有热敏感性和更敏感的敏感性,但比相关的相关的n-n-n-n-dinitro衍生物(如谷氨酸氨基酸铵(如杏仁粉)(如杏仁粉(r-n(r-n(r-n(r-n(r-n(r-n no 2),2)2)),它比相关的n-n-n-n-dinitro衍生物更稳定。 二硝酸根阴离子与各种阳离子形成富含氧气的盐的能力使其成为固体推进剂中能量氧化剂发展的有前途的候选者。 该化合物的潜在实际用途是替代高氯酸铵Nazeri,Gholam Hossein; Mastour,Ramin* +; Fayaznia,穆罕默德; Parviz高级材料研究中心Keyghobadi,P.O。框16765-3574 Tehran,I.R。 伊朗摘要:使用-30°C的硫酸和硝酸混合物进行硫氨酸钾的硝化。 以硫酸与硝酸的摩尔比(1:3.5)优化了反应时间。 通过将钾变成硫铵的钾产量差异。 发现产品的产率和纯度都从磺胺钾开始。 关键词:硫钾钾,二硝基酸,硝酸,二硝基铵,二硝基钾。 引言Dinitramide Salts是一种独特的氮气氧,于1988年首次发现[1,2]。 二硝酰胺盐具有较高的氧气含量,并在不同的柜台上制备,包括铯,铵和肼盐。 二硝基胺阴离子的弹药盐(NH 4 N(NO 2)2)或ADN比硝酸铵具有热敏感性和更敏感的敏感性,但比相关的相关的n-n-n-n-dinitro衍生物(如谷氨酸氨基酸铵(如杏仁粉)(如杏仁粉(r-n(r-n(r-n(r-n(r-n(r-n no 2),2)2)),它比相关的n-n-n-n-dinitro衍生物更稳定。 二硝酸根阴离子与各种阳离子形成富含氧气的盐的能力使其成为固体推进剂中能量氧化剂发展的有前途的候选者。 该化合物的潜在实际用途是替代高氯酸铵框16765-3574 Tehran,I.R。伊朗摘要:使用-30°C的硫酸和硝酸混合物进行硫氨酸钾的硝化。以硫酸与硝酸的摩尔比(1:3.5)优化了反应时间。通过将钾变成硫铵的钾产量差异。发现产品的产率和纯度都从磺胺钾开始。关键词:硫钾钾,二硝基酸,硝酸,二硝基铵,二硝基钾。引言Dinitramide Salts是一种独特的氮气氧,于1988年首次发现[1,2]。二硝酰胺盐具有较高的氧气含量,并在不同的柜台上制备,包括铯,铵和肼盐。二硝基胺阴离子的弹药盐(NH 4 N(NO 2)2)或ADN比硝酸铵具有热敏感性和更敏感的敏感性,但比相关的相关的n-n-n-n-dinitro衍生物(如谷氨酸氨基酸铵(如杏仁粉)(如杏仁粉(r-n(r-n(r-n(r-n(r-n(r-n no 2),2)2)),它比相关的n-n-n-n-dinitro衍生物更稳定。二硝酸根阴离子与各种阳离子形成富含氧气的盐的能力使其成为固体推进剂中能量氧化剂发展的有前途的候选者。该化合物的潜在实际用途是替代高氯酸铵
铝基质复合材料(AMC)对其出色的机械性能引起了极大的关注,尤其是在苛刻的航空航天和汽车行业中。本研究的重点是用碳化钾(B4C)和切碎的E玻璃纤维增强的铝7075的机械表征。主要目的是增强材料的强度和韧性,同时减轻其固有的脆性。增强过程涉及使用搅拌铸造方法将陶瓷颗粒和切碎的玻璃纤维整合到铝7075基质中。此方法确保了均匀的增强剂分散,从而导致复合结构。实验设置包括改变B4C和E玻璃纤维的重量百分比,以评估其对复合材料机械性能的影响。在ASTM标准标准下,评估了复合材料的密度,孔隙率,硬度和拉伸强度。结果表明,添加碳化氢硼和e-玻璃纤维可显着改善复合材料的硬度和拉伸强度,同时降低孔隙率。对磨损表面的扫描电子显微镜(SEM)分析提供了对磨损机制的见解以及增强作用在增强摩擦学性能方面的有效性。
维生素C或抗坏血酸是各种资源中必不可少的抗氧化剂,例如药物片,水果和蔬菜。人体不能单独合成它。这项研究旨在测量29种常见的压缩片剂,泡腾片,水果和Khat(Catha Edulis)叶片中的维生素C含量,这些含量是在也门本地市场中发现的。这项研究使用氧化钾含钾的氧化还原滴定方法。这些结果揭示了确认的欧美标准,并且在商业片剂中测得的维生素C含量之间没有显着差异(P <0.05),产品标签上所述的数量,以及Guava中水果中最高的维生素C含量(111.21 mg/100 g)(111.21 mg/100 g)(111.21 mg/100 g)(111.21 mg/100 g),而维生素C的含量最低,维生素C含量最低(8.7 g)(8.7 g)。
摘要:一种评估虚假决策的贝叶斯多元方法,是针对物质或材料的化学成分一致性而造成的,这是由于测量不确定性所致,该案例适用于该组合物受到质量平衡约束的情况。约束意味着,合格评估中组成部分内容的实际(“真”)值等于1(或100%)或其他正值小于1(小于100%)。因此,组件内容的实际值本质上相关。组件内容的相应测量值也相关。任何相关性都会影响对物质或材料化学组成的一致性评估中错误决策风险的评估。通过考虑所有观察到的相关性,讨论了一种用于适当评估相关风险的技术,包括评估受试者或材料组成的一致性概率或材料组成的概率。在R-gramming语言中应用了一种蒙特卡洛方法,以进行必要的计算。提供了风险评估的示例,以评估铂 - rhodium合金,纯三重氧化钾,香肠和合成空气的化学成分。