AI的进步超过了现有的监管格局,导致治理差距。这可能导致难以确保AI技术达到最高安全标准的困难。相反,过度严格的AI调节可能会引起创新,并转化为采用有益技术的延迟。自适应的AI监管环境可以鼓励技术及其在不同部门的应用中根据需要而发展。
需求已经存在。印度已经拥有4亿个数字健康用户,使用了Tele Health,Home Health,Home Testing,E-Pharmacies和其他具有数字功能的产品,即使没有大型医疗保健提供者的创新也是如此。Arthur d Little的一项调查,以确定印度数字化的医疗保健采用驱动的是什么,在使用电子商务服务的客户中,对数字健康解决方案的接受程度高达65%。据报道,长期疾病(如心脏血管疾病,糖尿病和高血压)的患者报告了数字保健工具的采用明显更高。大流行迫使人们将数字渠道用于护理需求。经历了以数字化实现医疗保健服务的好处,消费者现在认为这是必要的。
抽象的大语言模型(LLM)已成为医疗保健领域的变革性工具,在自然语言理解和产生中表现出了显着的能力。然而,它们在数值推理方面的熟练程度,尤其是在临床应用中的高风险领域,仍然没有得到充实的态度。数值推理在医疗保健应用中至关重要,影响患者的结果,治疗计划和资源分配。本研究研究了在医疗保健环境中数值推理任务中LLM的计算准确性。使用1,000个数值问题的策划数据集,包括诸如剂量计算和实验室结果解释之类的现实世界情景,根据GPT-3体系结构进行了精制LLM的性能。该方法包括及时的工程,事实检查管道的集成以及正规化技术以增强模型的准确性和泛化。关键指标(例如精度,回忆和F1得分)用于评估模型的功效。结果表明总体准确性为84.10%,在多步推理中直接的数值任务和挑战方面的性能提高了。事实检查管道的整合提高了准确性11%,强调了验证机制的重要性。这项研究强调了LLM在医疗保健数值推理中的潜力,并确定了进一步完善的途径,以支持临床环境中的关键决策。当它们成为这些发现旨在为医疗保健的可靠,可解释和上下文相关的AI工具做出贡献。关键字大语言模型(LLMS)·变压器架构·及时工程·精确度·精确·回忆·F1-SCORE 1简介大语言模型(LLMS)已成为人工智能领域的重大进步,证明了在处理和生成人类语言中的显着能力。这些模型由深度学习技术提供支持,在广泛的数据集上进行了培训,并有可能了解语言,细微差别和语言的复杂性。
“ AI的准确而复杂的图片(与其流行的描述竞争)在开始时,由于难以钉住人工智能的精确定义而受到阻碍。……奇怪的是,缺乏精确的,普遍接受的人工智能定义可能帮助该领域以不断加剧的速度发展,开花和前进。AI的从业人员,研究人员和开发人员的指导下是一种粗略的方向感,并且必须“继续下去”。尽管如此,定义仍然很重要,而尼尔斯·尼尔森(Nils J. Nilsson)提供了一个有用的定义:“人工智能是致力于使机器变得聪明的活动,而智能是使实体能够在其环境中适当和远见的质量。” [1]” [2]
以技术进步和对个性化医疗保健解决方案的需求不断增长的驱动,以患者为中心的医疗保健应用程序市场正在迅速发展。市场是根据应用程序类型进行了细分的,包括药物管理应用程序,远程医疗应用程序,健康监测应用程序以及健康与健身应用程序,每个应用都满足了多样化的患者需求。针对特定的患者群体,这些应用程序支持慢性疾病管理,急性护理,预防性护理,心理健康和小儿护理,改善患者参与度和结果。兼容性在仅iOS,仅Android,跨平台和基于Web的应用程序上有所不同,从而确保跨设备可访问性。此外,无缝数据集成起着至关重要的作用,具有EHR集成,可穿戴设备连接,社交媒体集成和患者报告的结果(PRO)跟踪增强互操作性
摘要:本研究彻底回顾了人工智能(AI)在医疗保健中的应用状态,有关不同疾病类型的AI使用趋势,这些疾病类型和问题妨碍了他们的进一步进展。该研究通过通过PubMed数据库找到有关医疗保健中AI的相关当前文章,使用了文献综述和数据分析。这项工作分析了AI在癌症,心血管疾病和神经系统疾病以及医疗保健现实部署中的瓶颈中的使用。研究结果表明,尽管AI证明了提高诊断精度的潜力,但与数据隐私,道德考虑和模型解释性有关的几个障碍仍然存在。总而言之,本综述对医疗保健中AI应用的当前状态进行了评估,并确定了需要进一步调查的关键领域。通过解决这些挑战,可以更有效地开发和广泛地实施未来的创新,最终有助于AI驱动的医疗保健解决方案的进步和优化。
尽管美国已投资于无障碍健康的数据集(例如,我们所有人目前包括近一百万参与者的基因组和临床数据),但需要更多代表性的数据来为所有美国人创建个性化医学。当前数据集的大小不足以发现症状或状况不经常观察到的患者的医学相关模式。有充分的理由相信,从chatgpt到dall-e的生成型AI的课程在其中培训更多的数据导致了极大的结果,同样适用于AI的医疗应用。当我们为医疗保健数据创新AI时,我们必须通过遵循既定的指南和标准(例如,《卫生AI AI的保证标准指南》)来确保质量数据是从个人中提供的。
现代医疗机构正在经历快速而根本的变化。医生,技术人员和其他医生的需求比以往任何时候都更高,并难以维持相同的护理水平 - 同时同时实施了新的临床和数据存储技术。医疗保健设施越来越复杂,那是在Covid-19迫使他们实施社会疏远和占用限制之前。
注:*财务分析假设运营期/合同协议为 25 年。财务分析基于以下原则:设施所有者和运营商之间签订简单的“准入协议”,将授予后者运营权并向用户收取费用,而无需支付场地费用或支付象征性费用。**虽然假设的服务费水平因设施中的床位数量而异,但财务分析使用的假设如下:一级护理 - 每张床每月 28 美元,二级护理 - 每张床每月 138 美元,三级护理 - 每张床每月 207 美元。更多详细信息可在此处找到:亚洲城市发展倡议和宜昌市政府的预可行性研究。