目标和背景:数十年来,稳态视觉诱发电位 (SSVEP) 领域的研究已经揭示了节律性光刺激在脑机接口方面的巨大潜力。此外,节律性光刺激为大脑振荡活动的同步提供了一种非侵入性方法。特别有效的方案能够实现不可感知的节律性刺激,从而减少眼睛疲劳和用户不适,这是有利的。在这里,我们通过要求参与者 (a) 在显性注意力条件下直接关注刺激源或 (b) 在隐性注意力条件下关注刺激源下方的十字线,研究 (1) 可感知和 (2) 不可感知的节律性光刺激的影响以及刺激对注意力的影响。
美国军方正计划将夜视设备连接到武器瞄准具,预计该技术最早将于 2018 年投入使用。它将使得夜视设备能够连接到武器上的热瞄准器,这将有助于士兵在战斗中更快地识别和摧毁敌方目标。这些设备的初步生产(称为快速目标采集)预计将在未来几个月内开始。快速目标捕获系统结合了两种技术,称为增强型夜视镜 III(Enhanced Night Vision Goggle III)的新型现代化夜视镜,简称 ENVG III,以及称为武器家族的下一代热瞄准装置景点),缩写FWS-1。士兵很快将能够在快速战斗中跟踪和交战敌人,而无需将武器举到视线高度。无线链路会将热瞄准器的标线直接指向夜视镜的视野,其精确度使得士兵无需将武器举至肩部水平即可对齐视线。先进的瞄准技术在近战中极其重要,因为目标会在瞬间出现和消失。当目标出现在眼镜视野中时,士兵不必举起步枪,只需将武器转向眼镜中的十字线即可攻击目标。实际上,他可以从侧面射击,而无需经典地举起步枪并瞄准肩部高度。FWS-1瞄准装置是位于M-4突击步枪上部的热瞄准装置。该装置还可以安装在口径 50(即 12.7 毫米)的重机枪上。热瞄准器发出的图像通过无线方式发送至 ENVG III 夜视镜并显示在夜视镜的视野中。它由十字线和热瞄准装置的高分辨率图像的一部分组成。夜视镜有两个通道。一个通道包括标准图像增强,而另一个通道显示来自热瞄准器的图像。两个图像均以无线方式发送并在同一视野中合并显示,因此您无法分辨两个不同来源之间的差异。ENVG III夜视镜的改进型号提供了更大的视野、更好的分辨率、检测红外激光和
(1) 水准测量和布局设备及配件,即木工水平仪、水平仪盒、气泡线水平仪、交叉检查铅垂线水平仪、柱式水平仪、靶心式水平仪、袖珍式水平仪、挂画水平仪、鱼雷式水平仪;角度取景器;楼梯/方形水准仪;水平铅垂瓶,即圆形铅垂瓶、弧形铅垂瓶、桶形铅垂瓶、多头铅垂瓶;磁性螺柱探测器;测量工具,即卷尺、卷尺、测量轮、尺子、码尺、米尺、角度定位器、间距和坡度定位器,即角度测量仪,即角度测量仪、轮廓长度测量仪、用于测量距离和标记的电子和数字激光器;铅坠、激光铅垂线、用于测量和标记的旋转激光器、用于测量、标记和与水平仪一起使用或作为水平仪使用的十字线激光器、激光线投影仪,即用于投射用于对准和定位的线的激光投影仪、激光点投影仪,即用于投射用于对准和定位的线和点的激光投影仪、带有激光线和点投影仪的鱼雷和铅垂线、管道调平激光器、滑轮对准激光器、工业对准点激光器、工业对准十字线激光水平仪、用于检测激光束的电子和数字检测器、用于远程检测激光的电子和数字检测器、用于增强建筑和测量行业使用的激光装置亮度的激光靶、用于测量、制图、建筑、规划、平整和平整的等级杆、激光杆、激光支架、用于测量仪器和激光器的三脚架,即建筑行业使用的旋转激光水平仪、线激光水平仪和点激光水平仪、三脚架适配器,即用于转换三脚架螺纹尺寸的适配器、水平铅垂支架、激光支架、经纬仪、测量水准仪、数字测量水准仪、经纬仪、建筑水准仪、瞄准水准仪、激光探测器夹具、数字水准仪、箱式水准仪、角度定位器(即,用于精确确定角度并用于建筑行业中的工具)、坡度定位器(即,用于精确识别坡度或斜度并用于建筑行业中的工具)、量角器、路障胶带、标记胶带、桩旗;手动工具(即,角尺;框架角尺;钢框架角尺;木工角尺、组合角尺;角尺;斜切角尺;用于建筑行业的可调角尺、干式墙角尺、干式墙刻划角尺;钢锯;钉子套件;钉子安装导轨(即,钉子安装工具)、粉笔线(即,用于标记长直线并用于建筑、木工和建筑行业中的工具)、滑动 T 型斜角尺。
关键词:倾斜影像、相机校准、3D 城市模型、多传感器、视轴校准 摘要:除了创建虚拟动画 3D 城市模型、国土安全和城市规划分析外,准确确定倾斜影像中的几何特征也是当今的一项重要任务。由于单幅图像数量巨大,控制点的减少迫使人们使用直接参考设备。这需要精确的相机校准和额外的调整程序。本文旨在展示各种校准步骤的工作流程,并将展示使用最终 3D 城市模型进行校准飞行的示例。与大多数其他软件不同,倾斜相机不是作为与天底传感器共同配准的传感器使用,所有相机图像都作为单个预定向数据进入 AT 过程。这样可以实现更好的后校准,以便检测单个相机校准中的变化和其他机械效应。所示的传感器(倾斜成像仪)基于 5 台 Phase One 相机,其中天底相机配备 50 毫米镜头,像素为 80 MPIX,而倾斜相机使用 80 毫米镜头以 50 MPix 捕捉图像。相机牢固地安装在外壳内,以防止物理和热变形。传感器头还承载着一个连接到 POS AV GNSS 接收器的 IMU。传感器由陀螺仪支架稳定,陀螺仪支架可产生浮动天线 -IMU 杠杆臂。它们必须与原始 GNSS-IMU 数据一起注册。相机校准程序基于一次特殊校准飞行执行,共拍摄了 5 台相机的 351 张照片并记录了 GPS/IMU 数据。这项特定任务设计在两个不同的高度,每个飞行高度都有额外的十字线。每个曝光位置的五张图像没有重叠,但在区块中有很多重叠,导致每个点的测量次数高达 200 次。每张照片上平均有 110 个分布均匀的测量点,这对于相机校准来说是一个令人满意的数字。第一步,借助天底相机和 GPS/IMU 数据,计算出初始方向校正和径向校正。通过这种方法,整个项目只需一步即可计算和校准。在迭代过程中,分别打开摄像头的径向和切向参数,然后检查相机常数和主点位置并最终进行校准。除此之外,孔侧校准既可以基于天底相机及其偏移量进行,也可以独立于每个相机进行,与其他相机无关。无论如何,这必须在完整的任务中执行,以获得单个摄像头之间的稳定性。确定节点到 IMU 中心的杠杆臂需要比单个相机更加谨慎,特别是由于倾斜角度较大。准备好所有这些步骤后,您将获得一个高精度传感器,该传感器能够完全自动提取数据,并快速更新现有数据。然后可以在完全 3D 环境中频繁监测城市动态。