摘要 目的. 为上肢瘫痪的参与者实现对单个假肢手指的神经控制。方法. 两名四肢瘫痪的参与者分别在左后顶叶皮层 (PPC) 植入一个 96 通道阵列。其中一名参与者还在左侧运动皮层 (MC) 的手旋钮附近植入了一个 96 通道阵列。在数十个疗程中,我们记录了参与者尝试移动右手单个手指时的神经活动。离线时,我们使用交叉验证的线性判别分析根据神经发放率对尝试的手指运动进行分类。然后,参与者在线使用神经分类器来控制脑机接口 (BMI) 的各个手指。最后,我们描述了双手单个手指运动过程中的神经表征几何形状。主要结果. 两名参与者在 BMI 控制对侧手指期间的在线准确率分别为 86% 和 92%(概率 = 17%)。离线时,线性解码器使用各自的 PPC 记录实现了 70% 和 66% 的十指解码准确率,使用 MC 记录实现了 75% 的解码准确率(机会 = 10%)。在 MC 和一个 PPC 阵列中,分解代码将对侧手和同侧手的相应手指运动联系起来。意义。这是第一项从 PPC 解码对侧和同侧手指运动的研究。对侧手指的在线 BMI 控制超过了以前的手指 BMI。PPC 和 MC 信号可用于控制单个假肢手指,这可能有助于四肢瘫痪患者的手部恢复策略。
摘要 目的. 为上肢瘫痪的参与者实现对单个假肢手指的神经控制。方法. 两名四肢瘫痪的参与者分别在左后顶叶皮层 (PPC) 植入一个 96 通道阵列。其中一名参与者还在左侧运动皮层 (MC) 的手旋钮附近植入了一个 96 通道阵列。在数十个疗程中,我们记录了参与者尝试移动右手单个手指时的神经活动。离线时,我们使用交叉验证的线性判别分析根据神经发放率对尝试的手指运动进行分类。然后,参与者在线使用神经分类器来控制脑机接口 (BMI) 的各个手指。最后,我们描述了双手单个手指运动过程中的神经表征几何形状。主要结果. 两名参与者在 BMI 控制对侧手指期间的在线准确率分别为 86% 和 92%(概率 = 17%)。离线时,线性解码器使用各自的 PPC 记录实现了 70% 和 66% 的十指解码准确率,使用 MC 记录实现了 75% 的解码准确率(机会 = 10%)。在 MC 和一个 PPC 阵列中,分解代码将对侧手和同侧手的相应手指运动联系起来。意义。这是第一项从 PPC 解码对侧和同侧手指运动的研究。对侧手指的在线 BMI 控制超过了以前的手指 BMI。PPC 和 MC 信号可用于控制单个假肢手指,这可能有助于四肢瘫痪患者的手部恢复策略。
