NALFLEET™ 压载舱抑制剂 9-933 最好从桶中直接加入用于填充水箱或系统的水中。无需严格配比,只要填充时的湍流足以在整个系统中有效分布即可。当要处理的系统已满且无法排空和重新填充时,可以通过空气搅拌或泵循环在开放式容器中分配压载舱抑制剂 9-933 处理剂。NALFLEET™ 压载舱抑制剂 9-933 适用于存在溶解氧的系统,使用空气促进混合不会损害腐蚀保护。
注释:3.光学测量是使用发光二极管 (LED) 光源的小角度入射辐射进行的。4.470 nm 输入辐照度由具有以下特性的 I nGaN 发光二极管提供:峰值波长 λ p = 470 nm、光谱半宽 ∆λ ½ = 35 nm,发光效率 = 75 lm/W。5.524 nm 输入辐照度由具有以下特性的 I nGaN 发光二极管提供:峰值波长 λ p = 524 nm、光谱半宽 ∆λ ½ = 47 nm,发光效率 = 520 lm/W。6.565 nm 输入辐照度由具有以下特性的 GaP 发光二极管提供:峰值波长 λ p = 565 nm、光谱半宽 ∆λ ½ = 28 nm、发光效率 = 595 lm/W。7.635 nm 输入辐照度由具有以下特性的 Al I nGaP 发光二极管提供:峰值波长 λ p = 635 nm、光谱半宽 ∆λ ½ = 17 nm、发光效率 = 150 lm/W。8.辐照度响应度 R e 的特征范围为 0 至 5 kHz。9.饱和辐照度 = (满量程频率)/(辐照度响应度)。10.照度响应度 Rv 是使用注释 4、5 和 6 中所述的 LED 发光效率值并使用 1 lx = 1 lm/m 2 ,根据辐照度响应度计算得出的。11.非线性定义为 f O 与零点和满量程之间的直线的偏差,以满量程的百分比表示。
6 同步基础 1005 6.1 相位计算和再生 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1010 6.1.2.1 压控晶体振荡器(VCXO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1031 6.5.3 搜索保护期或导频 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..........................................................................................................................................................................................................................1032 6.5.4.3 载波恢复 ....................................................................................................................................................1032. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 1036 6.6.2.2 升余弦频率滤波器系列 . . . . . . . . . . . . . . . . . . . . . . . 1039 6.6.2.3 频谱升余弦 (SRC) 频率滤波器系列 . . . . . . . . . . . . . . . . 1042
当你晋升到更高级别的领导职位时,你会感到兴奋。你的公司终于认可了你的才能,相信你有潜力引领组织的未来。与此同时,风险也更大了,你现在发现自己置身于一个鱼缸中,所有人都在看着你如何处理新工作。这种规模和审查的飞跃在许多方面考验着每一位新领导者的勇气,最明显的是他们的自信心。考虑领导层过渡的五个普遍方面,并遵循这些策略来抵消极度的傲慢或自我怀疑,找到正确的自信心衡量标准。• 留下第一印象• 由于首因偏差,你在升职后任期开始时的表现方式可能会留下持久的影响,无论是好是坏。在此期间,自信的领导者必须检查自己的自我重要性,以建立更深层次的联系,为未来的信任铺平道路。• 寻找早期胜利• 倾听和向你的团队学习至关重要,但不要让你对理解的追求推迟了关键决策。傲慢地强行推进并非最佳做法,但无所事事地等待行动许可同样不妥。• 授权和培养人才• 在担任新领导职务的头几个月,考虑到您仍在了解每个人,思考如何最好地授权工作可能具有挑战性。此外,专注于指导和培养您的团队以迎接未来似乎不如现在取得胜利那么紧迫。• 解决冲突• CEO 最希望在自身发展方面得到帮助的领域是冲突管理,这并不奇怪。随着您晋升到更高的领导职位,您的工作需要做出更大的权衡,并在更广泛的竞争利益相关者之间实现一致。• 建立长期信任• 在过渡后的蜜月期,新领导者可以对一些失误给予宽恕。但这段时间过得很快。为了确保您作为有效领导者的声誉,请专注于建立长期信任。而做到这一点的最快方法是通过开放的反馈和适应能力。
恒压状态下,芯片内部恒流环 CC_COMP 电压大 于 3.5V ,当输出负载电流 I O1 突然增大到 I O2 (超 过恒流输出电流 I OCP ), CC_COMP 会从高电压下 降到 3.5V 以下。当 CC_COMP 下降到 3.5V 时, 芯片会短暂关闭恒流控制,继续以恒压方式工作, 进入 P EAKLOAD 模式,系统升频, I O2 越大频率越大, 并且允许的最大频率增加至 F PKMAX ;与此同时会 启动内部的 P EAKLOAD 模式计时功能,保证此模式 的最大工作时间不会超过预设的 T HOLD 。计时时间 达到 T HOLD 后,芯片会强行退出 P EAKLOAD 模式, 并且会激活一个屏蔽时间 T BLANK 的计时,以确保 允许下一次进入 P EAKLOAD 模式至少超过此 T BLANK 时间;与此同时,会激活内部恒流模块的工作, 在这种情况下,由于负载还是 I O2 ,所以系统的输 出电压会持续下降,直至触发 H ICCUP 保护、系统 重启。
使用人工神经网络以低能耗成本从射频 (RF) 信号中提取信息是从雷达到健康的广泛应用的关键需求。这些 RF 输入由多个频率组成。在这里,我们表明磁隧道结可以并行处理具有多个频率的模拟 RF 输入并执行突触操作。我们使用一种称为极限学习的无反向传播方法,使用来自同时充当突触和神经元的磁隧道结的实验数据,对由 RF 信号编码的噪声图像进行分类。我们实现了与等效软件神经网络相同的精度。这些结果是嵌入式射频人工智能的关键一步。简介分析射频 (RF) 信号在各种应用中都至关重要,例如联网物体、雷达技术、手势感应和生物医学设备 1–8 。对于许多信号分类任务,例如发射器类型识别,人工神经网络已被证明比标准方法表现更好,并且表现出对噪声和缺陷的卓越鲁棒性 1 。然而,在传统计算硬件上运行神经网络非常耗时且耗能,这使得将这种功能集成到嵌入式系统中具有挑战性 9,10 。这一问题在射频信号的情况下被放大,因为它们需要先进行信号数字化,然后才能由神经网络处理。降低人工智能能耗的一种有前途的方法是利用新兴技术构建物理神经网络 11 。对于这一目标,自旋电子纳米器件具有关键优势,包括多功能性、快速动态、小尺寸、低功耗、高循环性、高可靠性和 CMOS 兼容性 12,13 。此外,自旋电子器件的高速动态为它们提供了发射、接收和处理射频信号的关键特性 14–20 。多项研究表明它们在构建硬件神经网络方面具有潜力 11,21–
跨频率耦合 (CFC) 反映了不同频率信号之间的 (非线性) 相互作用。来自患者和健康参与者研究的证据表明,CFC 在神经元计算、区域间相互作用和疾病病理生理学中起着至关重要的作用。本综述讨论了 CFC 计算的方法学进展和挑战,特别强调了杂散耦合、推断目标频带中的内在节律和因果干扰的潜在解决方案。我们特别关注在认知/记忆任务、睡眠和神经系统疾病(如阿尔茨海默病、癫痫和帕金森病)背景下探索 CFC 的文献。此外,我们强调了 CFC 在侵入性和非侵入性神经调节和康复的背景下以及对优化的意义。主要是,CFC 可以支持推进对认知和运动控制的神经生理学的理解,作为疾病症状的生物标志物,并利用治疗干预措施的优化,例如闭环脑刺激。尽管 CFC 作为神经科学的研究和转化工具具有明显的优势,但仍需要进一步改进方法,以促进其在该领域的机器人和仿生系统中实际和正确的使用。
摘要以及AIGC在CV和NLP中闪耀,其在无线领域中的潜力也近年来也出现了。然而,由于表示功能有限,现有面向RF的生成解决方案不适合生成高质量的时间序列RF数据。在这项工作中,受到CV和NLP扩散模型的稳定成就的启发,我们将其调整到RF域并提出RF扩散。为了促进RF信号的独特特征,我们首先引入了一种新颖的时频扩散理论,以启用原始扩散模型,使其能够在RF信号的时间,频率和复杂值域内利用信息。在此基础上,我们提出了一个层次扩散变压器,将理论转化为一种实用的生成DNN,通过跨越网络体系结构,功能障碍和复杂评估的操作员的精心设计,使RF-diffusion成为一种多功能的解决方案,以实现多种多样的解决方案。表现出了RF-Diffusion在合成Wi-Fi和FMCW信号中的出色性能。我们还展示了RF扩散在增强Wi-Fi传感系统和在5G网络中执行通道估计的多功能性。