科学界正在探索脑电图 (EEG) 与个人信息之间的关联。尽管使用 EEG 进行身份识别对研究人员来说很有吸引力,但是感知的复杂性限制了此类技术在实际应用中的使用。在这项研究中,通过降低脑信号采集和分析过程的复杂性解决了这一难题。这是通过减少电极数量来实现的,在不影响准确性的情况下简化了关键任务。事件相关电位 (ERP),又称时间锁定刺激,用于从每个受试者的头部收集数据。在放松一段时间后,向每个受试者直观地呈现一个随机的四位数字,然后要求他们思考 10 秒。对每个受试者进行了 15 次试验,在每个心理回忆片段之前都有放松和视觉刺激阶段。我们引入了一个新颖的派生特征,称为半球间振幅比 (IHAR),它表示横向对应电极对的振幅比。该特征是在使用信号增强技术扩展训练集后提取的,并使用多种机器学习 (ML) 算法进行测试,包括线性判别分析 (LDA)、支持向量机 (SVM) 和 k-最近邻 (kNN)。大多数 ML 算法在 14 个电极的情况下显示 100% 的准确率,根据我们的结果,使用更少的电极也可以实现完美的准确率。然而,AF3、AF4、F7 和 F8 电极组合与 kNN 分类器产生了 99.0 ± 0.8% 的测试准确率,是人员识别的最佳选择,既保持了用户友好性又保持了性能。令人惊讶的是,放松阶段表现出三个阶段中最高的准确率。
要了解人类大脑线路中半球间差异和共性/耦合的起源,确定左右半球同源区域间连接是如何由遗传决定和关联的至关重要。为此,在本研究中,我们用高质量的扩散磁共振成像纤维束成像分析了人类双胞胎和家系样本,并估计了同源左右白质 (WM) 连接的遗传性和遗传相关性。结果表明,两个半球之间 WM 连接的遗传性相似且耦合,并且同源 WM 连接的遗传因素 (即半球间遗传相关性) 的重叠程度在整个大脑中差异很大:从完全重叠到完全不重叠。特别地,皮层下 WM 连接的遗传性明显强于皮层 WM 连接,并且遗传因素在半球间完全重叠的机会更高。此外,长距离连接的遗传性和半球间遗传相关性比短距离连接更强。这些发现突出了 WM 连接及其半球间关系背后的遗传学决定因素,并深入了解了健康和疾病状态下 WM 连接不对称的遗传基础。
要了解人类大脑线路中半球间差异和共性/耦合的起源,确定左右半球同源区域间连接是如何由遗传决定和关联的至关重要。为此,在本研究中,我们用高质量的扩散磁共振成像纤维束成像分析了人类双胞胎和家系样本,并估计了同源左右白质 (WM) 连接的遗传性和遗传相关性。结果表明,两个半球之间 WM 连接的遗传性相似且耦合,并且同源 WM 连接的遗传因素(即半球间遗传相关性)的重叠程度在整个大脑中差异很大:从完全重叠到完全不重叠。特别地,皮层下 WM 连接的遗传性明显强于皮层 WM 连接,并且遗传因素在半球间完全重叠的机会更高。此外,长距离连接的遗传性和半球间遗传相关性比短距离连接更强。这些发现突出了 WM 连接及其半球间关系背后的遗传学决定因素,并深入了解了健康和疾病状态下 WM 连接不对称的遗传基础。
目的:描述一种解剖尸体大脑而不损伤大脑内侧结构和表面的新技术,确保大脑标本能够保存下来以供神经解剖学研究和训练。方法:在放大 6 至 40 倍的手术显微镜下,采用小脑上松果体上入路解剖 10 个成人尸体大脑。这种方法可以将大脑分成两个半球,同时可以直接看到第三脑室并保存中线结构。结果:小脑上松果体上入路可以准确、可靠地解剖大脑半球,而不会损伤大脑内侧结构。包括第三脑室在内的所有中线结构都得到了保存,为解剖研究提供了高质量的标本。结论:小脑上松果体上入路是大脑半球解剖技术的重大进步,确保大脑内侧结构的保存,并为神经外科培训和研究提供了优质标本。关键词:尸体大脑,纤维解剖,显微外科解剖,小脑上松果体上入路
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该预印本版本的版权持有人,该版本发布于2025年2月5日。 https://doi.org/10.1101/2023.06.13.544658 doi:Biorxiv Preprint
双眼立体视觉依赖于两个半球视网膜之间的成像差异,这对于在三维环境中获取图像信息至关重要。因此,与生物眼的结构和功能相似性的视网膜形态电子始终非常需要发展立体视觉感知系统。在这项工作中,开发了基于Ag-Tio 2纳米簇/藻酸钠纤维的半球光电磁带阵列,以实现双眼立体视觉。由等离子热效应引起的全光调制和Ag-Tio 2纳米群体中的光激发,以实现像素内图像传感和存储。广泛的视野(FOV)和空间角度检测是由于设备的排列和半球形几何形状的入射角依赖性特征而在实验上证明的。此外,通过构造两个视网膜形态的恢复阵列,已经实现了基于双眼差异的深度感知和运动检测。这项工作中证明的结果提供了一种有希望的策略,以开发全面控制的回忆录,并促进具有传感器内架构的双眼视觉系统的未来发展。
将美国军队与其他国家军队进行比较 美国是世界上唯一一个将其军队设计成能够离开一个半球,穿越广阔的海洋和空域,然后在抵达另一个半球后进行持续的大规模军事行动的国家。西半球的其他国家没有将其军队设计成这样做,因为它们负担不起,而且美国实际上是在替它们做这件事。另一个半球的国家没有将其军队设计成这样做,最基本的原因是它们已经在另一个半球,因此它们将国防资金主要花在主要针对影响该半球自己当地地区的事件的军队上。(一些国家,如俄罗斯、中国、英国和法国,有能力将军队部署到遥远的地方,但规模要小得多。)
全脑脑是复杂的大脑畸形,这是由于早期胎儿发育过程中大脑不完全的裂解而导致的。这种情况的特征在于普罗德龙(胚胎的前脑)的失败,以正确分成大脑半球的双叶,导致影响大脑和面部特征的异常。根据大脑分裂的严重程度,全脑脑分为四种类型:Alobar Holoporsencephaly:最严重的形式,其中没有脑半球分离,导致单个脑室心室和一个单裂脑。半月骨全脑脑:大脑半球部分分离,大脑的结构在某种程度上介于Alobar和Lobar之间。Lobar Holoporsencephaly:最少的严重形式,具有更好的脑半球分离和更正常的大脑结构。中半球间变体(syntelcephaly):半球在大脑中间没有分离,但可能在前和后方面更正常地分裂。是什么导致全脑脑?
I.厄瓜多尔基托的大学半球牙科学生。 div>II。 div>大学半球牙科的学生,厄瓜多尔Quito。 div>iii。 div>MSC。 div>卫生科学,正畸专家,厄瓜多尔基多的半球教授。 div>iv。 div><艾迪尔斯大学,厄瓜多尔基多斯大学。 div>
1 在此背景下,直接访问不应被解释为两个半球的独立性(Chu et al., 2020; Chu & Meltzer, 2019; Iacoboni & Zaidel, 1996; Rauschecker et al., 2012)。在这方面,Weems & Reggia (2004) 提出了一个合作模型,其中侧化刺激主要由对侧半球处理,但半球可以相互作用。