+由卡普里斯·罗伯茨(Caprice Roberts)在乔特威尔(Jotwell)中介绍(“法律学者可以去识别,庆祝和讨论与法律相关的最佳新奖学金的空间”) + [摘要]本文涉及联邦法院应在多大程度上提供类似的机会来获得离散宪法错误的救济。它探讨了对普遍性和中立价值的承诺如何转化为范式促进宪法补救措施的跨性基础的范式,以及最高法院如何选择替代路径。本文提出了一个新颖的框架,该框架显示了非跨性别的,根据教义上的不一致性的明确性,如何透明,半透明或不透明,它研究了该框架如何帮助改善宪法修正的司法方法。除其他贡献外,通过提供创新的工具,以将跨基础作为重要的(但不是绝对)的宪法法律,该项目提供了潜在的一步,以降低对法院在政治上的普遍看法,从而在这种情况下加强其合法性。
1938 年 4 月 6 日,杜邦® 化学品公司的科学家 Roy Plunkett 博士在寻找更佳的冷却剂时偶然发现了聚四氟乙烯 (PTFE)。他将一批四氟乙烯 (TFE) 气体在压力容器中放置一夜,第二天发现一层白色半透明蜡状固体:聚合 TFE,即 PTFE。聚四氟乙烯于 1945 年注册为商标,缩写为 Teflon®。今天,许多供应商都以不同的商标提供 PTFE。其化学结构是高分子量的氟饱和碳链 (C 2 F 4 ) n。氟原子与碳原子牢固结合,环绕着中心乙烯碳链,完全保护其免受化学侵蚀。1969 年 10 月,Bob Gore 先生偶然发现了膨体聚四氟乙烯 (ePTFE)。由于对拉伸速度过慢导致棒断裂感到沮丧,他快速拉出一根热的 PTFE 棒,发现他可以将 PTFE 拉伸到原始长度的 1000 倍。首先
6 年级入学理科课程大纲 人体系统:器官与器官系统、不同系统在进行生命过程时的整合、感觉器官。人体呼吸系统、人体循环系统 微生物与疾病:微生物的主要群、微生物引起的疾病、微生物的有益作用、分解者。 生态系统:食物链、捕食者-猎物关系、食物网、食物链中的能量转移、人类活动向生态系统中添加有毒物质、污染的原因和影响。 物质的物理和化学变化 光和声音:发光和不发光的物体、透明、不透明和半透明物体、声音、声音的传播、声音在不同材料中的速度、人耳、声音的强度。 电和磁:电流、电路及其组件、磁铁、磁铁的性质、磁性和非磁性材料、磁罗盘。地球土壤的结构:土壤、土壤的特性、土壤的类型、不同类型土壤之间的异同、土壤对水的吸收、土壤污染的各种原因。
本文旨在探索交互式产品如何帮助家庭环境中的电脑工作者缓解跆拳道急性压力。本论文提出了一种交互式跆拳道急性压力缓解系统。该系统采用眼动仪通过笔记本电脑摄像头检测高急性压力水平,并在屏幕的一部分巧妙地显示带有跆拳道文字的半透明红云,以帮助提高意识并促进跆拳道运动。然后,用户可以坐着踢桌子下面的护垫,或者站着踢或打墙上的护垫,与云或 LED 灯条的颜色互动,将其从红色变为绿色,并在完成设定目标时闪烁。该设计在 HTML 上下文中使用了人工智能眼动仪和 JavaScript 代码。对用户的测试结果表明,这种互动对于帮助家庭环境中的电脑工作者缓解跆拳道急性压力是有效的。
抽象定量相成像(QPI)从强度测量中恢复了光的精确波前。可以从这些量化的相移中提取半透明微观体的地形和光密度图。我们使用氮化硅倍曲底金属固有的色差束在相干束束的尖端进行定量相成像。我们的方法利用光谱多路复用来使用彩色摄像头从单个捕获中的多个散焦平面恢复相位。我们的0.5 mm光圈金属量具有28°视图和0.2π相分辨率(空气中的〜0.1λ)显示出可靠的定量相成像能力,用于内窥镜束束的实验。由于光谱功能直接在成像晶状体中编码,因此金属既充当聚焦元件,又是光谱过滤器。使用简单的计算后端的使用将实现实时操作。在据报道的基于金属的QPI中,完全缓解了内窥镜检查相时成像方法的关键局限性。
橙红色至稻草色半透明悬浮液。 3.临床信息 3.1 目标物种 鸡。 3.2 各目标物种的适应症 用于对5周龄以上的未来肉种鸡、未来蛋种鸡和未来蛋鸡进行主动免疫,以减少气囊病变和减少由滑液支原体引起的蛋壳形成异常的蛋数。 免疫开始时间:接种疫苗后4周。 减少气囊病变的免疫持续时间:接种疫苗后40周。 减少蛋壳形成异常的蛋数的免疫持续时间:尚未确定。 3.3 禁忌症 无。另见3.7节。 3.4 特殊警告 接种疫苗前2周或接种疫苗后4周请勿使用具有抗支原体活性的抗生素。这类抗生素包括四环素、泰妙菌素、泰乐菌素、喹诺酮类、林可霉素、庆大霉素或大环内酯类抗生素。若必须使用抗生素,应优先选择没有抗支原体活性的药物,如青霉素、阿莫西林或新霉素。接种疫苗后 2 周内不应使用这些药物。
摘要:斑马鱼是基础和翻译研究中最广泛采用的动物模型之一。斑马鱼的这种流行是由于几个优点,例如与人类基因组相似的高度,遗传和化学扰动的易感性,具有高繁殖力,透明且快速发展的胚胎的外部受精,以及相对较低的成本效率。尤其是人体半透明是斑马鱼的独特特征,它不能与其他脊椎动物生物充分获得。动物的独特光学清晰度和小尺寸使其成为光学调制和观察的成功模型。更重要的是,显微注射和高胚胎通透性的便利性易于使大小分子有效地递送到活动物中。最后,从一对动物获得的众多兄弟姐妹提供了大量重复和改进结果的统计分析。在这篇综述中,我们描述了基于各种策略的光化学工具的开发,这些分层以前所未有的时空分辨率控制生物学活性。我们还讨论了这些工具在斑马鱼中的应用,并强调了光化方法的当前挑战和未来的可能性,尤其是在单细胞水平上。
在医疗保健领域实施人工智能 (AI) 的想法越来越受欢迎,尤其是在决策和诊断领域。这是因为 AI 在速度和准确性方面都胜过人类。例如,Scott Mayer McKinney 及其同事展示了一个 AI 系统,它在预测乳腺癌方面的表现优于六名医生,并且该系统可以将第二位读者的工作量减少 88% (1)。如果这种表现表明 AI 在医疗保健领域的潜力,那么广泛的应用可能会彻底改变诊断和决策。对于 AI,没有统一的定义,每个人都可以可靠地同意,但通常有两三个高级区别来理解这些类型的技术。第一种是专为特定目的而构建的反应系统,有时称为“狭义”或“弱”AI。第二种是“通用”系统,它们能够在数据集上进行训练并自行学习(有时这些系统被归入“狭义”类别)。最后一种系统称为通用人工智能或“强”AI,目前完全是理论上的。这些系统可以复制自主的人类智能(2)。以下是公众可能熟悉的这些不同类型系统的一些示例:Stockfish(国际象棋游戏系统)、IBM 的 Watson(为 Jeopardy 构建,但现已应用于医学)和 HAL(2001:太空漫游中的流氓计算机助手)。在本文中,我重点介绍“通用”AI。然而,尽管“通用”AI 具有潜力,但它尚未广泛应用于医疗决策,至少在实验环境或创新医院环境之外。相反,该领域的大多数人工智能或多或少都属于“狭义”类别,因为它们被用作诊断工具,而不是决策者。我打算研究三种可用于医疗保健的高级“通用”人工智能类别:不透明系统(有时通俗地称为“黑匣子”),可解释的人工智能(有时通俗地称为“白匣子”)和半透明系统(“灰匣子”)。不透明系统是用户无法访问系统用于实现输出的底层过程的系统。这些通常被认为是高度准确的,但以牺牲问责制为代价(3)。可解释的人工智能是分配给那些允许用户清楚地解释行为、预测和影响变量的系统的一个类别。这些都是透明且可信赖的,但通常功能不足以做预测或模式匹配以外的更多事情。最后,半透明的“灰盒”是一个较少讨论的类别,它捕获了介于不透明和完全透明之间的系统。尽管存在这种中间类别,但辩论往往将半透明系统排除在讨论之外,而是在透明或不透明系统之间提出二分法选择。灰色系统的引入将讨论从二分法转变为一系列潜在工具。
本文介绍了空军技术学院开展的分析工作的部分结果,这些分析工作涉及在飞机操纵时静态和动态状态下计算机匹配系统、数字显示和模拟设备的可能性。以垂直速度参数为例,提供了一种匹配直升机 Mi-17-1V 指示的方法,该直升机装有 SWPL-1 Cyclops 飞行数据头盔显示系统(由空军技术学院开发,与模拟航空电子设备合作)。通过第一排惯性元件调整垂直速度显示,在计算机图形 KG-1 中以编程方式实现。另一方面,调整头盔提示系统 NSC-1 Orion 中显示的信息的方法(由空军技术学院为 W-3PL Capercaillie 直升机制造)以及从集成航空电子系统(带数字航空电子设备)获得的信息,例如磁航向(从航向布局 KCS-305 获得)和地理航向(从惯性导航系统 EGI-3000 获得)。通过对多功能显示器 MW-1、半透明显示器 HUD 和头盔显示器 WDN-1 的指示进行修改(以选定偏角的形式,在计算机任务 KM-1 上以编程方式实现)和对磁偏差的修改(定期引入航向补偿器布局 KCS-305)来实现指示的调整。
随着人工智能在围手术期医学中的应用越来越普遍,临床医生区分这些算法的差异化方面的能力至关重要。目前,有许多营销和技术术语来描述这些算法,但标准化程度很低。此外,与算法开发人员的沟通对于实现有效和实用的实施至关重要。这些讨论中特别令人感兴趣的是医疗从业者对算法和工具的输出或预测的理解程度。这项工作提出了一种简单的命名法,临床医生和开发人员都可以理解,以快速描述模型结果的可解释性。有三个高级类别:透明、半透明和不透明。为了证明该术语的适用性和实用性,这些术语被应用于已获得食品和药物管理局批准的人工智能和机器学习产品。在此审查和分类过程中,发现 22 种算法具有围手术期效用(在总共 70 种算法的数据库中),其中 12 种有公开的引文。这项工作的主要目的是建立一个通用的命名法,以加快和简化从临床医生到开发人员的算法要求的描述以及从开发人员到临床医生的适当的模型使用和限制的解释。