摘要 最近的进展凸显了当前量子系统的局限性,特别是近期量子设备上可用的量子比特数量有限。这一限制极大地限制了可以利用量子计算机的应用范围。此外,随着可用量子比特的增加,计算复杂性呈指数增长,带来了额外的挑战。因此,迫切需要有效使用量子比特并减轻当前的限制和未来的复杂性。为了解决这个问题,现有的量子应用试图将经典系统和量子系统集成在一个混合框架中。在本文中,我们专注于量子深度学习,并介绍一种名为 co-TenQu 的协作经典量子架构。经典组件采用张量网络进行压缩和特征提取,使高维数据能够编码到具有有限量子比特的逻辑量子电路上。在量子方面,我们提出了一种基于量子态保真度的评估函数,通过双方之间的反馈回路迭代训练网络。co-TenQu 已在模拟器和 IBM-Q 平台上实现和评估。与最先进的方法相比,co-TenQu 在公平环境下将经典深度神经网络的性能提升了 41.72%。此外,它的性能比其他基于量子的方法高出 1.9 倍,在实现相似准确度的同时,使用的量子比特数却减少了 70.59%。
当前的学习模型通常难以实现像人类一样的系统泛化,特别是在从有限的数据中学习组合规则并将它们推断为新的组合时。我们引入了神经符号递归机(NSR),其核心是根基符号系统(GSS),允许直接从训练数据中产生组合语法和语义。NSR采用模块化设计,集成了神经感知、句法分析和语义推理。这些组件通过一种新颖的演绎-溯因算法进行协同训练。我们的研究结果表明,NSR的设计充满了等变性和组合性的归纳偏差,使其具有良好的表现力,可以熟练地处理各种序列到序列任务并实现无与伦比的系统泛化。我们在四个旨在探测系统泛化能力的具有挑战性的基准上评估了NSR的有效性:用于语义分析的SCAN、用于字符串操作的PCFG、用于算术推理的HINT和组合机器翻译任务。结果证实了 NSR 在泛化和可转移性方面优于当代神经和混合模型。
在没有事先映射、无法要求用户以动作标签或奖励反馈的形式进行监督、也不事先了解用户试图完成的任务的情况下,我们如何训练辅助人机界面(例如基于肌电图的肢体假肢)将用户的原始命令信号转化为机器人或计算机的动作?本文的关键思想是,无论任务是什么,当界面更直观时,用户的命令噪音更小。我们将这个想法形式化为优化界面的完全无监督目标:用户命令信号与环境中诱导状态转换之间的相互信息。为了评估这个相互信息分数是否可以区分有效和无效界面,我们对 540K 个用户操作各种键盘和眼神注视界面(用于打字、控制模拟机器人和玩视频游戏)的示例进行了大规模观察性研究。结果表明,我们的相互信息分数可以预测各种领域的实际任务完成情况指标,平均 Spearman 等级相关系数为 ρ = 0.43。除了对现有界面进行离线评估之外,我们还使用无监督目标从头开始学习界面:我们随机初始化界面,让用户尝试使用界面执行他们想要的任务,测量相互信息分数,然后更新界面以通过强化学习最大化相互信息。我们通过一项小规模用户研究来评估我们的方法,该研究有 12 名参与者,他们使用受扰鼠标执行 2D 光标控制任务,并且让一名专家用户使用网络摄像头捕捉到的手势玩月球着陆器游戏。结果表明,我们可以从头开始学习界面,无需任何用户监督或任务的先验知识,只需不到 30 分钟的人机协同训练。