为了最大程度地减少与强制施用相关的纵向成像和潜在风险的辐射暴露,采取了二维(2D)非对比度轴向轴向单板CT CT,而不是在临床实践中常见的三维(3D)体积CT。然而,很难在纵向成像中找到相同的横截面位置,因此在不同年内捕获的器官和组织存在实质性变化,如图1。在2D腹部切片中扫描的器官和组织与身体成分措施密切相关。因此,增加的位置差异可以准确地分析身体组成的挑战。尽管有这个问题,但尚未提出任何方法来解决2D切片中位置差异的问题。我们的目标是减少位置方差在人体组成分析中的影响,以促进更精确的纵向解释。一个主要的挑战是,在不同年内进行的扫描之间的距离是未知的,因为该切片可以在任何腹部区域进行。图像注册是在其他情况下用于纠正姿势或位置错误的常用技术。但是,这种方法不适合解决2D采集中的平面运动,其中一种扫描中出现的组织/器官可能不会出现在另一种扫描中。基于参考。13,图像协调方法分为两个主要组:深度学习和统计方法。值得注意的统计方法包括战斗14及其变体,15-17 Convbat,18和贝叶斯因子回归。19然而,与生成模型不同,统计方法通常缺乏对我们方案至关重要的生成能力。基于深度学习的现代生成模型最近在生成和重建高质量和现实的图像方面取得了重大成功。20 - 26生成建模的基本概念是训练生成模型以学习分布,以便生成的样品 ^ x〜pdð ^xÞ来自与训练数据分布x〜pdðxÞ的分布相同。27通过学习输入和目标切片之间的联合分布,这些模型可以有效地解决注册的局限性。变化自动编码器(VAE),28是一种生成模型,由编码器和解码器组成。编码器将输入编码为可解释的潜在分布,解码器将潜在分布的样本解码为新数据。生成对抗网络(GAN)20是另一种类型的生成模型,其中包含两个子模型,一个生成新数据的生成器模型和一个区分实际图像和生成图像的歧视器。通过玩这个两人Min-Max游戏,Gans可以生成逼真的图像。Vaegan 29将GAN纳入VAE框架中,以创建更好的合成图像。通过使用歧视器来区分真实图像和生成的图像,Vaegan可以比传统的VAE模型产生更真实和高质量的图像。但是,原始的vaes和gan遭受了缺乏对产生图像的控制的局限性。有条件的GAN(CGAN)30和CONDINATION VAE(CVAE)31解决了此问题,该问题允许生成具有条件的特定图像,从而对生成的输出提供了更多控制。但是,这些条件方法中的大多数都需要特定的目标信息,例如目标类,语义图或热图,在测试阶段32作为条件,这在我们的情况下是不可行的,因为我们没有任何可用的直接目标信息。
微生物驱动全球碳循环1,并可以与宿主生物体建立象征关系,从而影响其健康,衰老和行为2 - 6。微生物种群通过改变可用的代谢物池和专门的小分子7、8的产生与不同的生态系统相互作用。这些群落的巨大遗传潜力被人相关的微型iSms举例说明,该微生物ISM的编码是人类基因组9、10的大约100倍。然而,这种代谢潜力在现代的未纳入代谢组学实验中仍未被反射,其中通常<1%的注释分子可以归类为微生物。这个问题特别影响质谱(MS)基于非靶向代谢组学,这是一种通过微生物11所产生或修饰的分子11的常见技术,该技术在复杂生物学样品的光谱注释中著名地挣扎。这是因为大多数光谱参考文献都偏向于原代代谢产物,药物或工业化学品的市售或以其他方式的标准。即使在注释代谢物时,也需要进行广泛的文献搜索,以了解这些分子是否具有微生物起源并识别各自的微生物生产者。公共数据基础,例如Kegg 12,Mimedb 13,Npatlas 14和Lotus 15,可以帮助进行这种解释,但它们大部分限于已建立的,很大程度上基因组所涉及的代谢模型或完全表征和发行的分子结构。此外,虽然旨在从机械上开发了旨在询问肠道微生物组的靶向代谢组学努力16,但它们仅着眼于相对较少的商业可用的微生物分子。因此,尽管MS参考文库不断扩大,但大多数微生物化学空间仍然未知。为了填补这一空白,我们已经开发了Microbemasst(https://masst.gnps2.org/microbemasst/),这是一种利用的搜索工具
超敏光谱是中红外(MIR)技术的重要组成部分。然而,miR探测器的缺点在单光子水平上对稳健的miR光谱构成了挑战。我们提出了miR单光子频率上转换光谱非局部将miR信息映射到时间do-main。来自自发参数下调的宽带miR光子频率向上转换为具有量子相关性保存的近红外带。通过纤维的组延迟,在1.18微米的带宽为2.76至3.94微米内的miR光谱信息被成功地投影到相关光子对的到达时间。在每秒6.4×10 6光子的条件下,使用单像素检测器证明了具有单光子敏感性的聚合物的传输光谱。开发方法绕过扫描和频率选择不稳定性,它在不断发展的环境中固有的兼容性和各种波长的可伸缩性而引人注目。由于其高灵敏度和鲁棒性,生化样品的表征和量子系统的弱测量值可能是预见的。
预算表及参加资格证明的提交地点: 东北防卫局企划部地域调整课副课长(总务企划)或总务科 宫城县仙台市宫城野区五轮1-3-15 邮政编码 983-0842 电话:022-297-8212(内线3224) 其他:请仔细阅读《东北防卫局公开对策实施指南》。 - 不具备参与资格或不符合规格的人员提交的报价将无效。 - 报价单需同时提交“排除黑社会组织承诺书”,以证明承包方不是不适当的承包方或从事不适当行为的一方。如果不提交,报价将无效。 报价结果将在我们的网站上公布。
1. 就本条而言,协商和自愿投标货件被视为“国内”或“国际”。国内货件是指提货和送货地址均位于美国 50 个州和哥伦比亚特区内的货件。国际货件是指至少有一个提货或送货地址不位于美国 50 个州和哥伦比亚特区内的货件。国内货件(所有单件额定重量的总和)不得少于 151 磅,但涉及阿拉斯加和夏威夷的货件除外,这些货件的最低额定重量为 301 磅。国际货件(所有单件额定重量的总和)不得少于 301 磅。有关额定重量计算,请参阅第 403 条。如果/当 USTRANSCOM 批准时,第 A 节和第 F 节中概述的指导适用于自愿和协商空运投标。在没有商业机场的情况下,不得使用谈判 66 和自愿招标来往于军事 67 机场之间进行空中运输。如果使用两用跑道,飞机将停留在商业跑道一侧,只有 TSP 或 TSP 安排的 69 商业服务才能从 TSP 的飞机上装载/卸载所有货物。美国 70 政府/国防部人员任何时候都不得从 TSP 的飞机上装载或卸载货物 71。招标计划下不会向 TSP 颁发 APACS 许可和外倾呼号 72。航空 TSP 在代表国防部提供航空运输时,应始终遵守适用的联邦法规、 73 条例和州法律。 74 参与 CRAF 计划是强制性的。通常,任何涉及国防部货物的事件都应报告给第 A 节第 IX 节表 76 1 紧急联系信息中列出的适当联系人。 77
如您希望以同等产品进行投标,则必须在11月21日(星期四)中午之前提交《同等产品确定申请表》,并提前确认您的投标是否被接受(批准)。 合同条款依照日本陆上自卫队物资购销标准合同为准。 中标人确定方式:在我单位确定的评估价格范围内,按单项总金额,以最低投标价格中标。如果有两名或两名以上最低投标人有资格中标,则通过抽签方式确定中标人。 (f) 合同的成立:合同或其他文件成立是指双方当事人签署、盖章后形成的合同或其他文件。其他情况,应当在中标时作出决定。 其他:参照《招标投标及合同指南》。 (3)无效投标 a) 不具备参加竞争所需资格的人员进行的投标或违反投标条件的投标; b) 违反“投标和签约指南”的投标; c) 投标金额、投标人名称和投标人印章难以区分的投标; d) 投标人的排除有组织犯罪的承诺是虚假的,或者违反了承诺; e) 投标迟于投标日期和时间提交,或者投标文件以邮寄等方式提交并在交付期限之后到达; f) 通过电报、电话或传真提交的投标 (4)合同等。如果中标金额加上消费税金额为 150 万日元或以上,则将准备这些。但是,金额在50万日元以上150万日元以下时,将开具发票,金额不足50万日元时,则无需开具发票。 (5)其他 a.如您希望参加投标,您必须提前通过传真或其他方式提交2022至2024财年资格审查结果通知副本,或者,如果您目前正在申请资格,则必须提交一份表明您已经申请的文件。 (一)委托代理投标的,应当在投标开始前提交委托代理委托书。 C)投标文件中必须注明不含税金额。 E. 允许通过邮寄等方式进行投标。但是,申请书必须于 2024 年 11 月 26 日星期二下午 5 点之前送达日本陆上自卫队航空学校宇都宫校会计部。 若省略印章,须填写负责人及承办人的姓名及联系方式。 (c)如初次投标已有邮寄投标人,则重新投标的时间安排如下: 日期和时间:2024 年 12 月 2 日星期一,下午 1:30 宇都宫校园总部大楼 2 楼投标室 如果您通过邮寄方式参与重新投标,您的申请必须在 2024 年 12 月 2 日星期一凌晨 12:00 之前到达日本陆上自卫队宇都宫校园航空学校会计部。 进货检验应当在检验人员指定的地点进行。 (k)如果在验收前需要任何设备进行交付和运输,则费用应由承包商承担。 (6)咨询处 〒321-0106 栃木县宇都宫市上横田町1360 有关投标、合同事宜,请联系航空学校宇都宫校区会计科。 电话:028-658-2151(内线535) 负责人:四本田 有关采购事项,请联系总务科供应组(内线274) 负责人:冈本 (7)发布地点 A. 航空学校宇都宫校区会计科公告栏 B. 北宇都宫营地网站 → 采购信息(URL:https://www.mod.go.jp/gsdf/kitautunomiya/index.html) C. 陆上自卫队采购信息 →“直接单位合同信息”航空学校宇都宫校区(URL:https://www.mod.go.jp/gsdf/chotatsu/index.html)
光感应应用正在迅速渗透到生活和技术的越来越多方面。在沟通,消费者,医学,生命科学,安全和安全以及汽车的一系列行业中发现了光感应应用。在许多这样的行业中,相当不敏感和缓慢的光电探测器就足够了。但是,在其他行业中,灵敏度和速度是必不可少的参数。其中一些应用包括生物医学(例如,DNA测序,流式细胞术和免疫测定分析),医学成像(例如,X射线,CT和分子成像),安全性和安全性(辐射光谱法),3D范围(LIDAR)以及高能物理学实验。在这些情况下,诸如硅光电层(SIPM)之类的特殊光电探测器起着至关重要的作用。