测量湿度(以及它的重要性)大多数人都非常清楚湿度对人类舒适度和健康的影响,尤其是当湿度与高温相结合时。湿度如何影响电气系统可能不太为人所知。例如,高湿度会导致液态水滴在电路上凝结,从而产生短路和腐蚀等问题。许多地理区域容易出现潮湿环境,尤其是热带地区。但即使在相对温和的气候下,也可能出现高湿度,具体取决于海拔、与水体的距离以及季节影响。此外,电气柜内部和周围的“微气候”可能导致与冷凝相关的问题。因此,国际电气测试协会 (NETA) 等标准机构通常要求在测试报告中包括湿度数据。绝对湿度与相对湿度 简单地说,湿度就是空气中的水蒸气量。通常用以下两种方法之一来测量: • 绝对湿度 (AH) 是给定体积的空气中存在的水蒸气质量。这通常以每立方米克 (g/m³) 表示,并随着空气体积的变化而变化。• 相对湿度 (RH) 是水蒸气密度 (单位体积质量) 与饱和蒸气压 (空气无法容纳更多水蒸气且液滴开始沉淀的点;这也称为露点) 下水蒸气密度之比。这通常以百分比表示,并随气压和温度而变化。在本应用说明中,湿度将表示为 RH。湿度与人 保持适当的湿度水平对于确保舒适健康的室内环境非常重要。湿度过高会使工作变得困难,尤其是在涉及体力活动的情况下。不那么直接(但同样重要)的是,高湿度会促进霉菌的生长,从而导致呼吸问题。它还会导致油漆剥落、铁质物体生锈以及因冷凝而光滑的表面。这些因素和其他因素会严重影响您的健康和安全。通常,湿度水平在 30% 到 40% 之间被认为是获得最大舒适度的理想水平。为了确保湿度保持在此范围内,设施采用各种 HVAC 系统,包括空调、受控机械通风和除湿机。为了测试其效率,定期用湿度计和其他湿度测量仪器检查湿度水平非常重要。在许多情况下,在较长时间内连续监测湿度也很有用,可以识别潜在的趋势和峰值。
2021年8月5日,美国政府宣布了到2030年的50%电动汽车销售目标。11接下来是2021年12月13日的EV收费计划的公告,该计划的目的是在2030年之前在美国安装500,000个充电器。12以同样的方式,欧洲委员会提出了欧盟(EU)范围范围内的CO 2减少新乘用车和货车的排放目标,到2035年为零排放。13然而,独立于政府政策和激励措施,预计电动汽车市场将在未来20年内飙升,根据伦敦的彭博社(BNEF)咨询公司的数据,全球新乘客销售的70%将于2040年发电。14,15因此,对电动电气电池的需求以及对电池材料的需求也将增加,甚至会进一步提高原始金属的供应,这是电动电池的关键组件。电动汽车电池或电动汽车电池组由几个电池模块组成,并包含电池管理系统(BMS),冷却系统以及其他控制和保护系统。电池模块由各种电池电池组成。电池结构每个电池电池都有两个电极(一个阳极,一个阴极),一个电解质,可为离子在电极之间流动的介质和一个防止电极相互接触的分离器。电池充电时,离子从阴极通过电解质和分离器流动到阳极。大多数电动汽车由于其高能量密度而使用锂离子(锂离子)电池,因此可以具有很高的电压和电荷存储,每单位质量和单位体积。当电池排放(为电动汽车驱动电动车辆)时,离子以相反的方向流动,从阳极通过电解质和分离器到阴极,迫使电子通过外部电路,从而产生了电流的电流。通常,锂离子电池在阳极上使用碳石墨和某种类型的锂离子金属氧化物晶体,例如阴极上的锂镍钴氧化铝(Linicoalo 2)。li-ion电池中使用的关键金属是锂,钴,镍,锰,铜和铝。阴极是定义电动电池性能的限制因素。li-ion电池阴极由一层薄层的微尺度晶体组成,这些晶体含有负电荷离子(O 2 - ),以及阳性电荷锂(Li +)以及其他金属的混合物,即镍(Ni),锰(Ni),锰(MN)和cobalt(CO)。使用各种过渡金属氧化物晶体(例如锂
技术行业向聊天机器人提问真空技术用于在低气压条件下进行的各种过程和物理测量。发生这种情况的原因有很多,包括去除可能引起反应的大气成分、破坏正常室温下的平衡、延长粒子行进距离以最大限度地减少碰撞以及减少分子撞击以防止表面污染。真空过程中允许的最大压力受单位体积分子数、平均自由程或形成单分子层所需时间等因素限制。在室温和正常大气压下,1 立方英尺的空气中约有 7 × 10^23 个分子高速运动。通常使用一柱汞的重量来表示大气压,一个标准大气压等于 760 毫米汞柱或 760 托。帕斯卡单位后来被采用为压力测量的国际单位,相当于 7.5 × 10^-3 托。真空技术的使用可以追溯到 20 世纪初的电灯泡制造和电子管生产。它使一些工艺能够取得优异的结果或实现在正常条件下无法达到的结果,例如镜片表面晕染和血浆制备。核能的出现带动了真空设备的大规模发展,其应用扩展到空间模拟、微电子等领域。人们已经开发出各种容量的产生、维持和测量真空的设备,从每分钟 1/2 到 1,000 立方英尺不等。单级泵的压力水平可低至 2 × 10^-2 托,双级泵的压力水平则低于 5 × 10^-3 托。泵从大气压到大约 1 托达到全速,然后在极限压力下转速降至零。双叶片泵采用偏心转子设计,适用于泵送液体和气体。另一种类型是旋转活塞泵,它类似于单叶片泵,但包含一个用作进气阀的空心叶片,当转子到达最高点时,叶片会关闭泵。极限压力水平受高压侧和低压侧之间泄漏的限制,泄漏是由于密封油中的气体夹带以及摩擦引起的油分解造成的。这种泵的典型应用包括食品包装、高速离心机、紫外光谱仪,以及作为其他泵的前级泵或低真空泵。容量范围为每分钟 100 至 70,000 立方英尺,工作压力范围为 10 至 10^-3 托。峰值速度通常在 1 至 10^-2 托的压力范围内产生。机械增压器使用同步的 8 字形叶轮和定子将气体从高真空侧转移到前真空侧。机械增压器在正常压力范围内运行时通常需要另一个泵作为后备。机械增压器的常见应用包括真空熔炼炉、电气设备浸渍设备和低密度风洞。真空技术在各行各业都至关重要,因为所有工艺和测量都是在低于正常大气压的条件下进行的。这样做通常是为了去除可能在工艺过程中引起物理或化学反应、扰乱平衡条件、延长粒子行进距离或减少每秒分子撞击次数的大气成分。最大允许压力可以根据各种参数定义,包括单位体积的分子数、平均自由程或形成单分子层所需的时间。在室温和正常大气压下,空气中约有 7 × 1023 个分子以随机方向运动,速度约为每小时 1,000 英里。传递给壁面的动量交换相当于每平方英寸壁面面积产生 14.7 磅的力。大气压可以用各种单位表示,包括单位横截面积、高 760 毫米的汞柱的重量。这导致了替代单位的开发,例如帕斯卡,其定义为牛顿每平方米。真空技术的首次大规模应用发生在 20 世纪初,用于制造电灯泡。随后出现了其他需要在真空下运行的设备,包括各种类型的电子管。人们发现某些在真空中进行的过程可以取得优异的结果,或在正常条件下无法实现的结果,这导致了进一步的发展。20 世纪 50 年代核能的出现推动了真空设备的大规模发展。人们发现了越来越多的真空过程应用,包括空间模拟和微电子技术。人们开发了各种用于产生、维持和测量真空的设备。其中包括容量从每分钟 1/2 到 1,000 立方英尺不等的泵,工作压力从大气压到低至 2 × 10-2 托或低于 5 × 10-3 托。其中一种设备是双叶片泵,可以泵送液体和气体。另一种类型是旋转活塞泵,它类似于单叶片泵,但有一个空心叶片作为进气阀。其可用容量范围从每分钟100立方英尺到高达70,000立方英尺,通常在10托到0.01托的压力下工作。然而,峰值性能在1-0.1托的较窄范围内实现,速度取决于所用前级泵的类型。机械增压泵的特点是两个8字形叶轮,它们在固定定子内以相反的方向旋转。气体被夹在这些叶轮和定子壁之间,然后被输送到泵的另一侧。值得注意的是,这种泵在与另一台在其典型压力范围内串联工作的泵配对时,运行效果最佳。一种常用的前级泵是油封旋转泵。机械增压泵通常用于真空熔炼炉、电气设备浸渍设备和低密度风洞。
分类为电导体的材料具有有效携带或运输电流的能力,而由于内部电子的移动有限,绝缘子无法这样做。电子流经物质的易于性主要取决于它们可以轻易地经过其原子和原子核的方式。铁和钢等材料是示例性的导体,而玻璃和塑料等物质的电导率较差。价电子在电导传导中的作用不能夸大;这些最外面的电子与他们的父原子松散结合,并且可以相对容易从其位置移开。易于获得或损失电子的无机材料通常显示高电导率,而有机分子由于将它们固定在一起的强共价键而倾向于绝缘。有趣的是,某些材料可能会根据其组成而表现出不同水平的电导率;例如,纯净水是一种绝缘子,但脏水在某种程度上导致电力。添加杂质或与其他元素掺杂可以显着改变材料的电导率。在电导体中,由于普通条件下的高电导率,银是最好的。然而,它对破坏的敏感性和随后降低电导率的氧化物层的形成不可忽视。相反,经常在需要电流控制的应用中使用强大的绝缘子,例如橡胶,玻璃和钻石。某些材料在极低的温度下成为超导体。材料的形状和大小在确定其电导率水平方面也起着至关重要的作用;较厚的碎片通常表现出比较薄的电导性能更好。此外,温度波动会影响电导率水平,而温度通常会导致材料内的电子迁移率提高。大多数材料根据温度和其他因素表现出不同水平的电导率。凉爽的金属通常是好的导体,而热金属的效率往往降低。传导本身有时会改变材料的温度。在导体中,电子自由流动而不会损害原子或引起磨损。但是,移动电子确实会遇到阻力。因此,流经导电材料的电流会加热它们。金属和等离子体通常是好的导体,这是由于其价电子的移动性。绝缘子通常由有机分子组成,主要由牢固的共价键组合在一起,使电子很难流动。掺杂或杂质等因素也会影响电导率,如纯净水是绝缘体,但由于自由浮动离子而导致的盐水。所有材料都可以根据表1。表1:导体,绝缘体和半导体特性铜是一个众所周知的导体,以最小的对立传递电流。橡胶是一种绝缘子,通常用于涂上用于电动工作的工具手柄。van de Graaff在1930年代。需要极高的电压才能迫使橡胶进入传导。石墨,一种碳的形式,用作半导体,限制了给定电压产生的电流量。在本文中,我们探讨了导体,绝缘体和半导体的一些特征。导体导体是一种对电子流(电流)几乎没有反对的材料。由于其电阻较低,因此通过它产生电流所需的能量很少。最好的导体具有最低的电阻,使其非常适合传输电流。一个原子的价壳决定其电气特性,其价值壳电子和单位体积原子的数量影响电导率。绝缘子绝缘子是具有极高电阻的材料,可防止电流流动。例如,电源线上的绝缘材料可防止电流在接触时到达您。一些元素,例如霓虹灯,是天然绝缘体。用于保护技术人员的常见绝缘子包括橡胶,特氟龙和云母等化合物。正如预期的那样,导体和绝缘子具有相反的特性,绝缘子具有完整的价壳,单位体积的原子很少。半导体的任何表现出导体和绝缘子之间中间电导率的元素都可以视为半导体。半导体:当面对明显的电阻时,导体和绝缘子铜之间具有耐药性的材料最小的对立变得显而易见。当原子紧密相互作用时,它们的能级堆在一起。等式1实现了两个主要目的:它使我们能够计算利息并揭示利息价值及其变量之间的关系。例如,等式1说明$ r = \ rho \ frac {l} {a} $,证明电阻与电阻率,长度和与横截面面积成反比成正比。此外,温度由于温度系数而影响导体的电阻率,导体随着温度的升高而升高。回顾问题概述了导体,绝缘体,半导体的定义,并解释了电导率如何由价电子和原子密度确定。电阻率定义为特定材料体积的电阻,通常以CMIL-ω/FT或ω-CM单位测量。导体表现出正温度系数,表明随着温度升高的耐药性增加。这种基本的理解将材料根据电导率的电导率分类为导体,绝缘体和半导体。例如,如果两个原子连接,则与单个原子相比,相邻能级的数量将是两倍。随着越来越多的原子融合在一起,这种模式继续存在,形成了多个层次的集群。在固体中,许多原子会产生大量的水平,但是大多数高能级均融合到连续范围内,除了根本不存在的特定差距。这些没有级别的区域称为带隙。电子占据的最高能量簇被称为价带。这种现象用于保护与保险丝的电路。导体具有部分填充的价带,具有足够的空位,使电子可以在电场下自由移动。相比之下,绝缘子完全填充了其价带,并在其之间留下了很大的差距。这个较大的间隙可防止电子移动,除非有足够的能量越过。半导体在价和传导带之间的差距较小。在室温下,由于热能,价带几乎已经满,导致某些电子转移到传导带中,它们可以在外部电场下自由移动。Valence带中留下的“孔”表现就像正电荷载体。温度较高的材料倾向于增加对电流的抵抗力。例如,5°C的温度升高可提高铜的电阻率2%。相反,由于电子在传导带中的填充水平升高,绝缘体和半导体的电阻率降低,它们可以在外部电场下移动。价和导带之间的能量差会显着影响电导率,较小的间隙导致温度较低的电导率较高。分子由于放射性元件和宇宙射线的辐射而分离为离子,使大气导电中的某些气体产生。电泳根据颗粒在电解溶液中的迁移率分离。欧姆加热会在电流流过电线时,如电线或灯泡所示。电阻器中消散的功率由p = i^2r给出。但是,在某些材料中,由于碰撞而导致的能量损失在低温下消失,表现出超导性。发生这种情况是因为电子会失去对声子的能量,但是在超导体中,通过电子和材料之间的复杂量子机械相互作用来阻止这种能量损失。常用的超导体是一种niobium and Titanium合金,它需要冷却至极低的温度才能表现出其性质。在较高温度下发现超导性能彻底改变了各个领域,从而实现了液氮而不是昂贵的液态氦气。这一突破为电力传输,高速计算等中的应用铺平了道路。12伏汽车电池展示了如何通过化学反应或机械手段来利用电动力。Van de Graaff Generator是Robert J.由于其概念上的简单性,这种类型的粒子加速器已被广泛用于研究亚原子颗粒。该设备通过将正电荷运送到绝缘输送带上的正电荷从基部到导电圆顶的内部,在那里将其移除并迅速移动到外面。带正电荷的圆顶会产生一个电场,该电场排斥额外的正电荷,需要工作以保持传送带的转动。在平衡中,圆顶的电势保持在正值下,电流从圆顶流向地面,并通过在绝缘带上的电荷运输均衡。这个概念是所有电动力来源的基础,在该源中,在单独的位置释放了能量以产生伏特细胞。一个简单的示例涉及将铜和锌线插入柠檬中,从而在它们之间产生1.1伏的电势差。“柠檬电池”本质上是一个令人印象深刻的伏特电池,能够仅产生最小的电力。相比之下,由类似材料制成的铜锌电池可以提供更多的功率。此替代电池具有两种溶液:一种含有硫酸铜,另一种含硫酸锌。氯化钾盐桥通过电气连接两种溶液。两种类型的电池都从铜和锌之间电子结合的差异中得出了能量。能量,从电线中取出游离电子。同时,来自电线的锌原子溶解为带正电荷的锌离子,使电线具有多余的自由电子。这会导致带正电荷的铜线和负电荷的锌线,该锌线被盐桥隔开,该盐桥完成了内部电路。一个12伏铅酸电池由六个伏特电池组成,每个电池串联连接时大约产生大约两个伏特。每个细胞都具有并行连接的正极和负电极,为化学反应提供了较大的表面积。由于材料经历化学转换的速度,电池会递送更大的电流。电池电位为1.68 + 0.36 = 2.04伏。在铅酸电池中,每个伏电池都包含纯海绵状铅和氧化铅的正电极的负电极。将铅和氧化铅溶解在硫酸和水中。在正电极下,反应为PBO2 + SO -4- + 4H + + 2e-→PBSO4 + 2H2O +(1.68 V),而在负末端,它是Pb + SO -4-→PBSO4-→PBSO4 + 2e- +(0.36 V)。通过汽车发生器或外部电源为电池充电时,化学反应会反转。60Ω电阻连接到电动力。字母A,B,C和D是参考点。源将点A保持在电势12伏高于点D,从而导致VA和VD之间的12伏的电势差。由于点A和B通过具有可忽略的电阻的导体连接,因此它们具有相同的电势,并且点C和D具有相同的潜力。因此,整个电阻的电势差也为12伏。可以使用欧姆定律计算流过电阻的电流:i = va -vd / rb。代替给定值,我们得到i = 0.2安培。可以使用等式(22):p = i^2 * R计算热量中消散的功率。插入值,我们得到p = 0.04瓦。当热量来自电动力源时消散的能量。该源在将电荷DQ从点d到点A移动的工作中所做的工作由dw = dq *(va -vd)给出。电池传递的功率是通过将DW除以DT获得的,导致P = 2.4瓦。如果两个电阻串联连接,则等效电阻是个体电阻的总和:rab = r1 + r2。使用R1和R2的给定值,我们获得RAB =7Ω。并行连接两个电阻时,电荷具有从C到D流动的其他路径,从而降低了整体电阻。可以使用等式(20):1/rcd = 1/r1 + 1/r2计算等效电阻的值。代替给定值,我们获得RCD = 1/0.7 =1.43Ω。在阻抗为2欧姆或5欧姆的情况下,值得注意的是,这些方程式可以相对轻松地适应多种电阻。