在这项工作中,我们基于电信O波段中发出的Ingaas量子点(QD)开发和研究单光子源。量子设备是使用原位电子束光刻制造的,结合了热压缩键合,以实现背面金镜。我们的结构基于INGAAS/GAAS异质结构,其中QD发射通过减少应变层在1.3 L m处向电信O带红移。QD通过阴极发光映射预选的QD嵌入带有背面金镜的台面结构中,以提高光子萃取效率。在脉冲非共振润湿层激发下进行的光子自动相关测量在高达40 K的温度下进行,显示纯单光子发射,这使得设备使用Stirling Croimoolers兼容独立操作。使用脉冲P-shell激发,我们实现了单光子的发射,高光子抑制G(2)(0)¼0.0276 0.005,是(12 6 4)%(12 6 4)%(12 6 4)%的AS测量的(96 6 6 10)%和(96 6 10)%和相关的连接时间(212 6 25)的可见性(12 6 4)%。此外,结构显示出5%的提取效率,这与该光子结构的数值模拟所期望的值相当。我们设备的进一步改进将通过光纤维实现量子通信。
摘要 — 最近的研究表明,将时间分辨的单光子雪崩二极管 (SPAD) 传感器与神经网络直接耦合,可以简化信号处理并减少冗余。然而,之前的尝试仅限于通用神经网络模型,包括长短期记忆 (LSTM),这些模型无法实现针对特定任务的优化。基于对 SPAD 深度感知任务需求的洞察,这项工作引入了一种高度简化的脉冲循环神经网络,专门为此目的而量身定制。该模型具有独特的单输入门架构,仅通过简单的脉冲神经元实现。与经典 LSTM 相比,它的准确度有所提高,参数数量减少了 1.95 倍,能耗降低了至少 8.40 倍,同时性能显著优于其他脉冲神经网络。结果强调了开发专用于当前任务的网络架构的重要性,这可能为完全像素内处理的潜在进步铺平道路。索引词 — 单光子雪崩二极管、直接飞行时间、脉冲神经网络、循环神经网络、机器学习
摘要:具有微米孔的固体泡沫用于不同领域(过滤、3D 细胞培养等),但目前,控制其孔隙水平的泡沫几何形状、内部结构和单分散性以及机械性能仍然是一个挑战。现有的制造此类泡沫的尝试要么速度慢,要么尺寸受限(大于 80 μm)。在这项工作中,通过使用温度调节的微流体工艺,首次创建了具有高度单分散开放孔(PDI 低于 5%)的 3D 固体泡沫,其尺寸范围为 5 至 400 μm,刚度跨越 2 个数量级。这些特性为细胞培养、过滤、光学等领域的激动人心的应用开辟了道路。这里,重点放在光子学上。从数值上看,这些泡沫打开了三维完整光子带隙,临界指数为 2.80,因此与金红石 TiO 2 的使用兼容。在光子学领域,这种结构代表了第一个具有此功能的物理可实现的自组装 FCC(面心立方)结构。
• 高宽带检测效率(接近 1,许多 𝝀) • 超高时间精度(数十皮秒) • 超低暗计数率(< 1 cps) • 超高检测率(> 1 Gcps) • 出色的 PNR 性能
摘要 - 超导纳米电视单光子探测器(SNSPDS)的可伸缩性,可重复性和操作温度一直是自设备首次提出以来的主要研究目标。最近将氦离子辐照作为SNSPD的后处理技术的创新可以使高检测效率更容易复制,但仍然知之甚少。此外,从高-T C材料中以微米范围的尺度制造探测器可以分别提高可伸缩性和工作温度。同时,在宽电线和诸如Diboride镁之类的更高T材料中制造成功的设备已被证明已被证明。在这项工作中,我们比较了硝酸氮化物和二吡啶镁探测器中的氦离子辐照,并与不同的材料堆栈进行了比较,以便更好地了解辐照的机制以及在有效剂量上封装层的实际意义。我们检查了实验有效剂量测试的效果,并将这些结果与相应材料堆栈中模拟预测的损伤进行了比较。在两种材料中,辐照都会导致计数率的提高,尽管对于硝酸盐而言,即使在测试最高的剂量为2的最高剂量下,这种增加也没有完全饱和。6×10 17离子/cm 2,而对于抗封闭的二氨基镁,即使是测试的最低剂量为1×10 15离子/cm 2的最低剂量似乎高于最佳。我们的结果证明了氦离子辐照到截然不同的设备和材料堆栈中的一般适用性,尽管具有不同的最佳剂量,并显示了这种后加工技术在显着提高SNSPD效率方面的可重复性和有效性。
a INFN Trieste Trieste Italy b University of Trieste and INFN Trieste Trieste Italy c University Aldo Moro of Bari and INFN Bari Bari Italy d CNR-ISTP and INFN Bari Bari Italy e Abdus Salam ICTP Trieste Italy and INFN Trieste Trieste Italy f Europe organization for nuclear research (cern) CH-1211 geneve 23 Switzerland g went university of science and技术WybrzeåyWyspiaåskiego
本文介绍了在龙骨项目框架下开发的高速近红外单光子检测器(空间量子源分布的技术开发,ESA ARTES C&G计划)。基于在Geiger模式下运行的GHz门控雪崩光电二极管,该检测器提供紧凑性,毛皮和冷却能力,无维护操作和高速单光子检测性能。这些高性能使其非常适合极低的光级检测应用,例如太空式量子通信,卫星激光范围,绕行空间碎片光学跟踪和远程激光雷达。本文详细介绍了系统的体系结构和性能指标,涵盖了量子效率,深度计数率,时间抖动,最大计数率,时间窗口宽度以及螺栓效率的概率。实质性增强。
ROV General Specs Width : 333.2 Height : 228 Length : 480.6 (22.7”) Weight (in air) : 11.6 (25.6 ) Body Material : Anodized Machined Aluminum, Carbon Fiber, Buoyancy Foam Window Material : Acrylic Depth Rating : 120 (400 ) Operating Temp : -10°C to 50°C (14°F – 122°F) Case: Customized鹈鹕驱动器/推进器:磁耦合/密封保修:1年 - 零件和人工(可选2 - 3年)
在研究和工业量表上进行了广泛的研究和利用。但是,它们在光子技术中的使用非常有限。近年来,纳米和生物技术的发展已经开放了在广泛的应用中使用生物聚合物作为实际光子设备的可能性,尤其是针对基于蛋白质和多糖的生物聚合物。自然界研究最多的调查生物聚合物的病例之一是几丁质。几丁质是许多生物体的外骨骼,翅膀和细胞壁中存在的多糖(图1)。光学上,几丁质呈现一个同质反向指数(约1.55),在VIS中吸收过失。从现在开始的几十年后,该领域的开创性作品表明,几丁质形成了复杂的纳米结构,例如3D光子晶体[2],该结构促进了基于这些结构的仿生设备的发展(图1)[3]。然而,尚未实现几丁质光子纳米结构的生长。尽管几丁素有趣的是,可能是研究最多的