在经典密码学中,单向函数(OWFS)是最小的假设,而量子密码学中并非如此。引入了几种新的原语,例如伪兰顿单位(PRUS),伪andomfunction-likestate Generator(PRFSGS),PseudorandomState Generators(PRSGS),单向状态发电机(OWSGS),单向路线(OWNWAIGH),单向(Owpuzzs)(Owpuzzles)和EFAUZZS和EFAIRT。它们似乎比OWF弱,但仍然意味着许多有用的应用程序,例如私钥量子货币方案,秘密键加密,消息身份验证代码,数字签名,承诺和多方计算。现在,没有OWF的量子加密的可能性已经开放,该领域最重要的目标是建立它的基础。在本文中,我们第一次表征了具有元复杂性的量子加密原语。我们表明,当且仅当Gapk是弱量化的量子时,就存在单向拼图(Owpuzzs)。Gapk是一个有望的问题,可以决定给定的位字符串是否具有小的Kolmogorov复杂性。弱量化 - 平均强度意味着实例是从QPT可采样分布中采样的,对于任何QPT对手,其造成错误的可能性大于1 / poly。我们还表明,如果存在量子PRG,则GAPK是强烈的量子 - 平均水平。在这里,强烈的量化 - hardis是弱量化量的强度,其中对手犯错的概率大于1 /2 - 1 / poly。最后,我们表明,如果GAPK是弱经典的平均水平,那么就存在量子性(IV-POQ)的不可能证明。弱经典的平均雄硬与弱量子平均硬化相同,但对手是PPT。IV-POQ是捕获基于采样和基于搜索的量子优势的量子性证明(POQ)的概括,并且是Owpuzzs的重要应用。 这是量子优势基于元复杂性的第一个时间。 (注意:有两项并发作品,[KT24B,CGGH24]。)IV-POQ是捕获基于采样和基于搜索的量子优势的量子性证明(POQ)的概括,并且是Owpuzzs的重要应用。这是量子优势基于元复杂性的第一个时间。(注意:有两项并发作品,[KT24B,CGGH24]。)
图 2. 声子介导的量子态转移和过程层析成像。a 测量的 Q 1 激发态群体 PQ 1 e 与时间和 Q 1 裸频率的关系,耦合器 G 1 处于中间耦合 κ 1 / 2 π = 2.4 MHz(在 3.976 GHz 处测量),G 2 设置为零耦合。在这种配置中,Q 1 的能量弛豫主要由通过 UDT 1 的声子发射主导,其次是行进声子动力学。白色和红色虚线分别表示单向和双向工作频率(见正文);插图显示量子位激发和测量脉冲序列。b 通过行进声子在单向(左)和双向(右)工作频率下进行量子态转移。与单向传输相比,双向传输的 Q 2 的最终群体要小 4.5 倍,这与模拟结果一致。绿色实线来自主方程模拟。插图:脉冲序列。对于任一过程,Q 1 的发射率均设为 κ uni | bi c / 2 π = 10 | 6 MHz,对应于 81 | 138 ns 的半峰全宽 (FWHM) 声子波包。c 单向和双向区域的量子过程层析成像,过程保真度分别为 F uni = Tr ( χ exp · χ ideal ) = 82 ± 0 . 3 % 和 F bi = 39 ± 0 . 3 %。红色实线显示理想传输的预期值;黑色虚线显示主方程模拟,其中考虑了有限量子比特相干性和声子通道损耗。不确定性是相对于平均值的标准偏差。
24 小时后 LDH 检测,N = 4,4 个技术重复中有 1 个生物学重复,+/- SEM,单向方差分析,****,p < 0.0001
量子计算优势是指容易用于量子计算的计算任务的存在,但对于经典的计算很难。无条件显示量子优势超出了我们当前对复杂性理论的理解,因此需要一些计算假设。哪种复杂性假设是必要的,并且足以满足量子优势?在本文中,我们证明存在量子性(iv-poq)时,并且仅当存在经典的单向拼图(Owpuzzs)时,就存在量子性的量化证明(IV-POQ)。据我们所知,这是第一次获得量子优势的完全加密表征。iv-poq是量子性证明(POQ)的概括,其中verifier在交互期间有效,但随后可能会使用无限的时间。IV-POQ捕获先前研究的各种类型的量子优势,例如基于采样的量子优势和基于搜索的量子优势。 先前的工作[Morimae和Yamakawa,Crypto 2024]表明,可以从OWFS构建IV-POQ,但是从较弱的假设中构建IV-POQ的结构是敞开的。 我们的结果解决了开放问题,因为据信owpuzzs比OWF弱。 owpuzzs是许多量子加密原语所暗示的最基本的量子加密原语之一,而不是单向函数(OWFS),例如伪和单位单位(PRUS),pseudorandom andom state state nate state Intate Generators(PRSGS)和单向状态生成器(单向状态生成器(OWN)。 因此,IV-POQ与经典的Owpuzzs之间的等效性强调,如果没有量子优势,那么这些基本的加密原始原始物将不存在。IV-POQ捕获先前研究的各种类型的量子优势,例如基于采样的量子优势和基于搜索的量子优势。先前的工作[Morimae和Yamakawa,Crypto 2024]表明,可以从OWFS构建IV-POQ,但是从较弱的假设中构建IV-POQ的结构是敞开的。我们的结果解决了开放问题,因为据信owpuzzs比OWF弱。owpuzzs是许多量子加密原语所暗示的最基本的量子加密原语之一,而不是单向函数(OWFS),例如伪和单位单位(PRUS),pseudorandom andom state state nate state Intate Generators(PRSGS)和单向状态生成器(单向状态生成器(OWN)。因此,IV-POQ与经典的Owpuzzs之间的等效性强调,如果没有量子优势,那么这些基本的加密原始原始物将不存在。等效性还意味着量子助理是Owpuzzs应用程序的一个示例。承诺以外,以前没有知道Owpuzzs的应用。我们的结果表明,量子优势是Owpuzzs的另一种应用,它解决了[Chung,Goldin和Gray,Crypto 2024]的开放问题。此外,它是Owpuzzs的第一个量子计算 - 经典交流(QCCC)。为了显示主要结果,我们介绍了几个新概念,并显示了一些将引起独立感兴趣的结果。尤其是我们引入了一个交互式(和平均值)版本的采样问题,其中该任务是通过两个量子脉络化的tompolynomial-timealgorithm之间的经典相互作用来采样转录本。我们表明,QuantumAdvantional的交互式抽样问题等同于IV-POQ的存在,IV-POQ被认为是Aaronson结果的交互式(和平均值)版本[Aaronson,TCS,TCS 2014],SAMPBQP = SAMPBQP = SAMPBPP。最后,我们还引入了零知识的IV-POQ,并为其存在的研究足够和必要的条件。
[13]。Rabin原型OT的安全性是基于分解问题的。这些是相对强大的计算假设。然而,众所周知,遗忘转移可能不能基于较弱的假设:证明忽略的转移是安全的,假设仅在黑盒减少中的单向函数与证明p = np [24]一样困难。遗忘的转移与关键协议一起在一系列任务中落下,这些任务只知道如何使用至少使用陷阱门单向功能实施。但是,如果爱丽丝和鲍勃可以访问量子通道,则可以将遗忘的转移降低为较弱的原始词,称为位承诺[4,12],因此仅在量子计算机模型中仅保存一个单向函数。遗忘的转移也可以基于嘈杂的通道[15,14]。在本文中,我们描述了如何使用接收器鲍勃的内存大小来实现遗忘的传输。我们假设有大量随机数据的初始广播,在此期间,BOB可以免费使用无限制的概率函数。只要函数的输出大小有限并且不超过BOB的内存大小(存储空间),我们就可以证明OT协议是安全的。在爱丽丝上没有任何计算或内存限制。为了执行协议,双方都需要使用一定数量的内存。Let;成为0 <<<<的常数Let;成为0 <<<<
太空系统司令部颁奖颁奖典礼$ 4550万美元的启动服务订单向诺斯罗普·格鲁曼系统公司(Northrop Grumman Systems Corporation for Northrop Grumman Systems Corporation)
我们的生活方式专注于尽可能多地消费,我们可以说,自工业革命以来,我们一直生活在线性经济中。在线性经济中,产生了主要的一次性产品,从而导致不成比例的非可再生自然资源的耗尽,产生大量废物以及相关的降解和污染,从而导致气候变化。这种单向经济模型在生产中适用于自然资源的提取,这些自然资源用作生产投入,然后将其用于批量生产产品的材料流中,这些产品被推向消费市场。用于消费,大多数这些批量生产产品用于一次使用,通常在使用后处理。这种单向批量生产和消费模型是不可持续的,我们开始感受到它的影响。向循环经济的过渡是一种可持续生产和消费的方式。
摘要:在高应变速率(HSR)加载下的单向和平原编织S2玻璃/乙烯基酯复合材料的压缩特性和失败分析已使用Split Hopkinson压力棒(SHPB)技术研究。在这项工作中采用了一种系统的实验方法,以确定各种应力水平下的损伤进展以及对复合材料的应变率影响。经典的SHPB设备已通过波浪捕获机制纳入,以应用预定的冲击负荷水平并限制重复的负载。这有助于识别加载期间微结构损伤进展。研究了所有三个主要方向的应力 - 应变响应,并通过微观检查确定相关的故障模式。将准静态抗压强度,失效应变和弹性模量与SHPB测试结果进行比较,以确定失败机理的变化。观察到单向和普通编织复合材料的抗压强度和失效应变均取决于速率。分析了这种压缩响应的速率依赖性,并建立了对复合材料的速率影响之间的相关性。最后,在高应变率负载下,还针对单向复合材料进行了三维瞬态有限元分析(FEA),以便对失败机理有透彻的了解。载荷以厚度,纤维和横向施加,并模拟相应的应力轮廓。加载的所有三个主要方向的应力 - 应变行为的FEA预测与高应变率实验结果良好相关。
随着创新和竞争力需要更多的数据和连接性,Secure Xchange网络可以减少资产的曝光率,允许IT网络与关键网络和基础架构之间的安全数据交换(单向或两向)。