• 女性,41 岁,VAS 腰痛,产后压力性尿失禁 II 期 • 2023 年 9 月 – 腰痛失代偿 – VAS 5/10 – 送往 rhb:入院:临床上以压力后腰痛为主,活动范围有限,客观上:肌肉不平衡,深层肌肉稳定系统功能不足(mTA,盆底肌肉)+ OA:尿失禁(OA:在“突然”分娩后,患者患有尿失禁,并且腰痛逐渐恶化 5 年 – 重复保守治疗(药物和物理治疗)......仅部分有效......考虑手术) RHB 2023 年 9 月 12 日 • 综合 rhb 的适应症 – 包括 2x T 物理治疗、物理治疗
49 Lang J E 1 , Brown H 2 , Crombie E 1 1.Victoria Infirmary, 2.格拉斯哥卡利多尼亚大学通过肛门检查进行盆底肌肉评估:数字和压力测量技术的比较。研究假设/目的 改良牛津量表 (MOS) 已被描述用于阴道盆底肌肉 (PFM) 评估,并且与压力测量评估 (1) 显示出很强的相关性。它也被用于肛门评估 (2,3)。尚未发现使用 MOS 进行数字肛门评估与压力测量进行比较的研究。本研究的目的是确定与参考标准相比,男性和女性的 MOS 是否存在任何关系。研究设计、材料和方法 本研究为前瞻性、相关性、受试者内研究,经伦理委员会批准。每个受试者使用两种不同的测试程序;两种程序均在同一次就诊时进行。测试程序为: • 肛门指检 • 肛门压力测量评估 测试程序的顺序是随机的。受试者仰卧在沙发上,双脚平放,膝盖和臀部弯曲,臀部外展。肛门指检 研究人员根据 MOS(表 1)评估肛门括约肌收缩强度;重复三次,每次收缩之间休息十秒。取三次挤压的中位数进行分析。肌肉反应评分
摘要:鳗草 (Zostera marina) 是潮间带和潮下带生态系统的关键组成部分。然而,人类活动的压力已导致其种群在全球范围内下降。划定和持续监测鳗草分布是了解这些压力和提供有效的沿海生态系统管理的重要组成部分。此类空间监测的一种拟议工具是远程图像,它可以经济高效地频繁覆盖大片且难以接近的区域。但是,要有效应用这项技术,需要了解鳗草及其相关基质的光谱行为。在本研究中,原位高光谱测量用于定义关键光谱变量,这些变量可在 Z. marina 和相关水下基质之间提供最大的光谱分离。对于原位水面反射数据集的鳗草分类,所选变量为:斜率 500–530 nm,一阶导数 (R') 在 566 nm、580 nm 和 602 nm,总体准确率为 98%。当原位反射数据集经过水校正时,所选变量为:566:600 和 566:710,总体准确率为 97%。使用现场光谱仪识别鳗草的深度限制平均为 5.0 至 6.0 m,范围为 3.0 至 15.0 m,具体取决于水柱的特性。涉及高光谱机载图像底栖分类的案例研究表明,变量选择的主要优势是满足统计上更复杂的最大值的样本量要求
2. 上海航天设备制造有限公司,上海 200245) 摘要:液压胀形工艺可以实现大型储罐底部的整体成形,但其质量受诸多工艺参数的影响。针对整体储罐底部液压胀形过程中出现的起皱、开裂缺陷,建立了以预胀压力、液压压力、压边力、压边圆角半径等工艺参数为优化目标的多目标优化模型。基于有限元仿真,利用Kriging技术建立工艺参数与质量标准之间的代理模型。采用NSGA-III算法,在储罐底部达到壁厚变化量最小、断裂趋势最小、翻边皱褶最小、皱褶趋势最小等目标的条件下,确定最优工艺参数。与粒子群优化(PSO)算法相比,NSGA-III算法更适合求解该优化问题。通过仿真实验验证了该方法的有效性和结果的准确性。关键词:储罐·液压成形·克里金法·NSGA-III
测量测量法用于由于PFM活性导致在阴道内压力中注册变化。配备有测量传感器的阴道内探针用于测量[19]。在MMHG或CMH 2 O [20]中获得结果。测量通常是在说谎的情况下进行的。最大自愿收缩(MVC)定义为肌肉激活前的压力与收缩期间获得的最高压力值之间的最大差异[20,21]。测量法显示出良好的评估者间可靠性[11,22]。然而,结果受到腹腔内压力的影响[16]。经过测量传感器通常可用于医疗专业人员,并且用于PFM的高级系统中(例如,pelvifly)[23,24]。测量法是用于评估PFMF的最常见方法。总共使用了23篇文章。二十二篇文章使用了阴道内探针,一篇文章在外部设备中使用了压力传感器。在四项研究中测量了最大肌肉力量,最大程度的肌肉力量和耐力,在1个研究肌肉中
注释: 1.B 级温度范围为 -40 ℃ ~+85 ℃。 2.这些数据是按最初设计的产品发布的。 3.一次校准实际上是一次转换,因此这些误差就是表 1 和表 3 所示转换噪声的阶数。这 适用于在期望的温度下校准后。 4.任何温度条件下的重新校准将会除去这些漂移误差。 5.正满标度误差包括零标度误差 ( Zero-Scale Error )(单极性偏移误差或双极性零误 差),且既适用于单极性输入范围又适用于双极性输入范围。 6.满标度漂移包括零标度漂移 (单极性偏移漂移或双极性零漂移)且适用于单极性及 双极性输入范围。 7.增益误差不包括零标度误差,它被计算为满标度误差——对单极性范围为单极性偏移 误差,而对双极性范围为满标度误差——双极性零误差。 8.增益误差漂移不包括单极性偏移漂移和单极性零漂移。当只完成了零标度校准时,增 益误差实际上是器件的漂移量。 9.共模电压范围:模拟输入电压不超过 V DD +30mV ,不低于 GND-30mV 。电压低于 GND-200mV 时,器件功能有效,但在高温时漏电流将增加。 10.这里给出的 AIN ( + )端的模拟输入电压范围,对 TM7706 而言是指 COMMON 输入 端。输入模拟电压不应超过 V DD +30mV, 不应低于 GND-30mV 。 GND-200mV 的输入 电压也可采用,但高温时漏电流将增加。 11.VREF=REF IN ( + )- REF IN ( - )。 12.只有当加载一个 CMOS 负载时,这些逻辑输出电平才适用于 MCLK OUT 。 13.+25 ℃时测试样品,以保证一致性。 14.校准后,如果模拟输入超过正满标度 , 转换器将输出全 1, 如果模拟输入低于负满标度, 将输出全 0 。 15.在模拟输入端所加校准电压的极限不应超过 V DD +30mV 或负于 GND - 30mV 。 16.当用晶体或陶瓷谐振器作为器件的时钟源时 (通过 MCLK 引脚 ), V DD 电流和功耗 随晶体和谐振器的类型而变化 (见“时钟和振荡器电路”部分)。 17.在等待模式下,外部的主时钟继续运行, 5V 电压时等待电流增加到 150 μ A , 3V 电 压时增加到 75 μ A 。当用晶体或陶瓷谐振器作为器件的时钟源时,内部振荡器在等待 模式下继续运行,电源电流功耗随晶体和谐振器的类型而变化 (参看“等待模式” 一节)。 18.在直流状态测量,适用于选定的通频带。 50Hz 时, PSRR 超过 120dB (滤波器陷波 为 25Hz 或 50Hz )。 60Hz 时, PSRR 超过 120dB (滤波器陷波为 20Hz 或 60Hz )。 19.PSRR 由增益和 V DD 决定,如下:
量子点发光二极管(QD-LED)是日常生活中使用的显示设备的例子。作为设备中使用的最新一代发光二极管(LED),量子点发光二极管(QD-LED)具有色域纯正(即颜色可通过尺寸调谐,半峰全宽(FWHM)约为几十纳米)[9]、与高清屏幕、虚拟/增强现实集成度高[4]、量子效率高、发射明亮[9]等特点,具有很好的应用潜力。自然而然,分子作为基本量子体系,启发人们只用一个分子来构造LED的概念,即单分子发光二极管(SM-LED)。它具有更高的原子经济性和集成度、通过精确有机合成可调的色纯度、可控的能带排列、避免分子间荧光猝灭等特点。[9]事实上,我们看到的物理世界就是由分子构成。因此,用单个分子作为显示像素最能体现现实世界,这也是显示器件的终极目标。然而,分子水平上的器件工程一直不是一项简单的任务。这种工程的典型例子是硅基微电子器件的小型化和摩尔定律的延续。[10]为此,通过自下而上的途径制备多功能分子器件是一种很有前途的策略。[11,12]受由单个D–σ–A分子组成的整流器的初始理论提议的推动[13],各种功能性单分子器件,如场效应晶体管[14,15]、整流器[16,17]、开关[18,19]和忆阻器[20],已通过长期优化功能分子中心、电极材料和界面耦合而不断改进。[11,12,21]
摘要 - 在Wobot机器人的定位中,由于电磁波衰减或由于水浊度而导致的光相机,它不能依靠传感器(例如GPS)。声纳对这些问题免疫,因此尽管空间和时间分辨率较低,它们仍被用作水下导航的替代方案。单光声声纳是传感器,其主要输出为距离。与Kalman滤波器(例如Kalman滤波器)结合使用时,这些距离读数可以纠正通过惯性测量单元获得的本地化数据。与多光束成像声纳相比,单光束声纳廉价地集成到水下机器人中。因此,本研究旨在开发使用单光声声和基于压力的深度传感器的低成本定位解决方案,以纠正使用卡尔曼过滤器的静止折线线性定位数据。从实验中,每个自由度的单束声纳能够纠正本地化数据,而无需复杂的数据融合方法。索引术语 - Kalman过滤器,本地化,声纳,内部机器人