摘要 - 提出并使用脉冲压缩相位敏感的光学时间域重骨(φ-OTDR)提出并证明具有单时间表空间分辨率的分布式声传感器(DAS)。使用正扫向脉冲和负脉冲脉冲来扩大杂作差DAS系统的频率调制范围,以实现高空间分辨率。使用雷利增强的单模纤维(ESMF)来放大反向散射信号并抑制褪色的噪声。脉冲压缩和ESMF的组合使系统可以完全量化高空间分辨率为1.2 cm,应变分辨率为1.46Nε / Hz。另外,还显示了以120 〜130 kHz的频率检测和定位。因此,这项工作中提出的高空间分辨率DAS系统有可能用于用于大型设备的结构健康监测,例如航天器,高超音速车和深海潜水员。
飞秒直接激光写入(FS DLW)是在透明介电材料中产生3D光子微结构的强大方法[1,2]。后者在短时间内通过非线性过程吸收FS脉冲的能量,从而在μM规模的辐照面积(损伤轨道)内进行了永久性的材料修饰,从而导致折射率的热变化。激光波导(WGS)最近引起了极大的关注[1]。飞秒脉冲对激光WGS的铭文受益于快速制造时间,高精度,获得各种几何形状和活性材料。对于此类WG,达到了低至中等传播损失。wg激光器代表光子积分电路的构件之一[2]。如果设计正确,它们会受益于单模模式操作,低阈值和高光强度[3]。表面WG可以通过将非线性光学材料沉积导致脉冲激光通过evanescent-Field景偶联而进行功能化[4,5]。
量子井纳米层通常显示单模激光,因为增益饱和抑制了其他模式的排放。相比之下,对于带有gan量子井的低语画廊模式的微台面激光器作为活性材料,观察到高于阈值的多模激光发射。这种有趣的发射特征表现出了以下事实:几种模式同时在激光开始时显示了输入 - 输出曲线中的特征扭结。纳米层的量子理论用于支持实验发现,并在存在增益饱和的情况下分析这种行为。在相邻模式之间的耦合效应被鉴定为多模磁力的起源,该构图通过类似于经典波浪混合效应的种群脉动在模式之间启动光子交换。降低了这种类型的模式耦合,并显示了增加模式间距。结果可以为在集成光子电路中的多模层应用铺平道路。
摘要:提出并实施了两种在掺铒碲酸盐玻璃中制作通道波导的方法。在第一种方法中,通过特殊的硅掩模将 1.5 MeV 和 3.5 MeV 能量的 N + 离子以不同的通量注入玻璃样品来制作通道波导。以 1.0 × 10 16 离子/cm 2 的通量注入的波导工作波长高达 980 nm,并显示出铒离子的绿色上转换。在第二种方法中,使用 11 MeV C 4+ 离子微束在 Er 3+ :TeO 2 W 2 O 3 玻璃中直接写入通道波导,通量范围为 1·10 14 –5·10 16 离子/cm 2 。波导在单模状态下工作,最高可达 1540 nm 电信波长。通过逐步热退火,传播损耗从辐射波导时的 14 dB/cm 降低至 λ = 1400 nm 时的 1.5 dB/cm。
我们设计了一种通过相空间分布相关性来认证非经典特征的方法,该方法统一了准概率和相关函数矩阵的概念。我们的方法补充并扩展了基于切比雪夫积分不等式的最新结果 [Phys. Rev. Lett. 124, 133601 (2020)]。这里开发的方法在相空间中的任意点关联任意相空间函数,包括多模场景和高阶相关性。此外,我们的方法提供了必要和充分的非经典性标准,适用于 s 参数化函数以外的相空间函数,并且可以在实验中使用。为了证明我们技术的强大功能,我们仅使用二阶相关和 Husimi 函数来验证离散和连续变量、单模和多模以及纯态和混合态的量子特性,这些函数始终类似于经典概率分布。此外,我们还研究了我们方法的非线性推广。因此,我们设计了一个通用且广泛适用的框架,以揭示相空间分布矩阵中的量子特性。
量子代码通常依靠大量的自由度来达到低错误率。但是,每个额外的自由度都会引入一套新的错误机制。因此,最大程度地减少了量子代码使用的自由度是有帮助的。一种量子误差校正解决方案是将量子信息编码为一个或多个骨气模式。我们重新审视旋转不变的骨气代码,这些代码在fock状态下由整数g隔开,而间隙g则赋予了这些代码的数字弹性。直觉上,由于相位运算符和数字换档运算符不会通勤,因此人们期望在弹性到数换速器和旋转错误之间进行权衡。在这里,我们获得了与高斯dephasing误差相对于GPAP的单模单模式代码的近似量子误差的不存在的结果。我们表明,通过使用任意多种模式,G型多模式代码可以为任何有限的高斯dephasing和振幅阻尼误差产生良好的近似量子误差校正代码。
我们通过合并自制模式选择耦合器(MSC)来展示可见光的全纤维涡流激光器。绿色或红色波带的MSC是通过专门设计和融合单模纤维(SMF)和几个模式纤维(FMF)来制造的。分别在绿色和红色波长下分别从LP 01到LP 11模式的功率分离器和模式转换器,插入可见漏洞的MSC作用。红光全纤维涡流激光器由10厘米Pr 3 + /yb 3 +:Zblanfer,纤维bragg螺纹,纤维末端 - 面镜和635 nm的MSC形成,可产生涡流束,涡流束在634.4 nm and Autpute power ob±1处产生涡流±1。绿色全纤维涡流激光器由12厘米Ho 3 +:Zblanfier,两个纤维尾镜和550 nm的MSC组成,该MSC在548.9 nm处产生OAM±1的涡流梁,输出功率为3 mW。
挤压的光态对于在计量和信息处理中出现量子技术至关重要。CHIP集成光子学为可扩展有效的挤压光发电提供了一条途径,但是,寄生非线性过程和光学损失仍然是重大挑战。在这里,我们通过DE-DUTAINE DUAL-PUMP自发的四波混合物在光子晶体微孔子中进行了单模正交挤压。在可扩展的低损坏硅硝化光子芯片平台中实现,微孔子具有量身定制的纳米溶解,可调节其共鸣以抑制寄生非线性过程。以这种方式,我们在BUS波导中估计有7.8 dB的芯片挤压,并有可能进一步改进。这些恢复为通向量子增强的量化测定法,高斯玻色子采样,连贯的Ising机器和通用量子计算的综合挤压光源打开了有希望的途径。
量子隐形传态被认为是许多量子信息处理任务中的基本原语,并已在各种光子和基于物质的装置中得到实验证实。在这里,我们考虑在费米子场模式中编码的量子信息的隐形传态。在费米子系统中,超选择规则导致纠缠和隐形传态的图景更加不同。特别是,人们被迫区分单模纠缠交换和通过贝尔不等式违反进行认证或不进行认证的量子比特隐形传态,正如我们在此处详细讨论的那样。我们重点关注受奇偶校验超选择影响的系统,其中粒子数不固定,并将它们与受粒子数超选择约束的系统进行对比,这些系统与可能的实际实现相关。最后,我们分析了对费米子模式纠缠的操作解释的影响,并研究了所谓的混合最大纠缠态对隐形传态的有用性。
摘要:开发了一种基于微腔纤维马赫德 - Zhhnder干涉仪的新型无标签光纤生物传感器,并实际上证明了用于DNA检测的。使用偏置剪接标准通信单模纤维(SMF)制造生物传感器。传感器的光路径受偏置开放腔中液体样品的影响。在实验中,在折射率(RI)测量中实现了-17,905 nm/riU的高灵敏度。在此基础上,探针DNA(pDNA)使用APTES固定在传感器表面上,从而实现了捕获的互补DNA(cDNA)样品的实时监测。实验结果表明,生物传感器的高灵敏度为0.32 nm/fm,检测限为48.9 AM。同时,传感器具有高度可重复和特定的性能。这项工作报告了易于制造,超敏感和无标签的DNA生物传感器,该生物传感器在医学诊断,生物工程,基因识别,环境科学和其他生物领域中具有重要的潜在应用。