碳水化合物的定性分析。碳水化合物的定性和定量测试。碳水化合物的定性和定量分析。碳水化合物定量分析。碳水化合物PDF的定性分析。碳水化合物是在动物和植物中都可以发现的复杂分子。它们的特征是其化学配方cn(H2O)N,其中n代表碳原子和水分子的数量。这些化合物通过氧化提供了能量,并用作储存的化学能源。除了作为主要能源外,碳水化合物还在细胞成分的合成中起着至关重要的作用。碳水化合物分为三个主要类别:单糖,二糖和多糖。单糖由包含3至7个碳的单个碳水化合物分子组成,而二糖是通过将两个单糖连接在一起而形成的。多糖由许多单糖单元组成。当我们食用碳水化合物时,它们在我们的体内分解,最终形成水和二氧化碳,释放出用于各种身体功能的能量。多余的碳水化合物可以在肝脏中存储为糖原或转化为脂肪。植物通过光合作用产生碳水化合物,该过程利用来自太阳的能量来从水和二氧化碳中构建这些化合物。单糖结构可以使用Fischer投影来表示,这显示了分子中每种手性碳的立体化学。这有助于轻松比较单糖结构。例如,葡萄糖和半乳糖是两个糖,它们的名称不同,因为它们在碳4。在溶液中,大多数单糖作为环状半含量存在,其中醛或酮基在同一分子的另一端与一个羟基反应。有两种主要形式的D-葡萄糖:α-D-葡萄糖和β-D-葡萄糖。这些结构在解决方案中不断互相互连。化学测试可以确定糖是否还原。还原糖含有一个游离的异源碳,该碳可以与Fehling的试剂(如Cu2+还原引起的红色变红)反应。Barfoed的测试相似,但与各种糖的反应不同。Seliwanoff的测试涉及脱水,并形成带有酮的樱桃红色复合物,而Aldose的反应较慢。化学测试还可以识别特定类型的碳水化合物。例如,碘形成带有淀粉的蓝色复合物,表明淀粉糖或其他螺旋盘绕的多糖。产生的颜色取决于多糖的结构和碘溶液的强度/年龄。与酵母配对时,许多碳水化合物可以进行发酵,从而产生乙醇和二氧化碳作为副产品。C6H12O6→2 CH3CH2OH + 2 CO2(G)发酵用于酿造啤酒和葡萄酒,在这里生产的酒精可作为所需的结果。但是,并非所有糖都可以用酵母作为食物来源。注意:有些测试需要热水浴。确定在存在酵母菌的情况下发酵哪些糖,哪些糖不得进行,您将进行一系列测试。发酵的证据将表现为二氧化碳气体的进化。在每个测试中,一个含有酵母和要测试的糖的溶液将被困在倒置的小试管中。几天后,检查测试管中的气泡形成。如果存在,则表明发酵发生。二糖和多糖暴露于酸或特定酶时可以水解。当水解二糖时,其产物是单个单糖。多糖在水解后产生葡萄糖,麦芽糖和葡萄糖的混合物。如果完全水解,则产品将是葡萄糖。在本实验中,您将水解蔗糖,然后测试是否存在还原糖。您还将水解淀粉并同时测试减少糖和淀粉。实验过程中始终戴安全护目镜。在实验的结论中,将所有废物处理在指定的无机废物容器中。在热板上加热几个烧杯,在需要时准备好它们。1。发酵:本部分描述了如何制备测试。大型测试管已被标记并填充了要测试的每个溶液。将一个小试管倒置在每个大型试管中,使其完全填充溶液。记录演示开始的日期和时间。接下来是Barfoed的测试!大型试管的每个顶部都被覆盖并倒置,以便内部的小试管完全充满溶液。加入并溶解到每个试管,0.5 g的碳水化合物样品,50 mL实验室水和0.02-0.03 g的酵母菌。检查小型测试管中的任何气泡。如果存在,则表明在反应过程中产生了气体,在管中发生了表示发酵。您的任务是进行一些观察!在实验的这一部分中,您将测试已知的葡萄糖,果糖,乳糖,蔗糖,淀粉的样品,并将其与未知成分样品进行比较。您将使用三种不同的测试:Fehling的测试,Barfoed的测试和Seliwanoff的测试。在Fehling的测试中,您将与6 ml溶液B混合6 mL溶液A,以创建Fehling的溶液。然后,在包含未知样品的每个试管中加入2 ml的该组合溶液,以及一些已知样品进行比较。将管子在沸水浴中加热5分钟,并观察发生的事情。如果您看到红色沉淀形式,则表示正反应。您将在每个试管中将每种溶液与3 mL barfoed的试剂混合1毫升。然后,将管子在沸腾的水浴中加热5分钟,观察发生的事情。如果看到红色沉淀形式,它也表示正反应。请注意沉淀出现需要多长时间。最后,您将使用Seliwanoff的测试!然后,加入4毫升Seliwanoff试剂并充分混合。记录您的观察结果!5。6。将每种溶液添加10滴以在包含未知样品的每个试管中测试,以及一些已知样品进行比较。在沸腾的水浴中加热管子,直到看到颜色变化(这可能需要大约10分钟)。记住要仔细观察并记录您做出的任何结果或观察结果!碘测试:我们将测试葡萄糖,果糖,乳糖,蔗糖,淀粉,水,并将其与未知成分样品进行比较。首先,将每种溶液的1 ml添加到7个标记的测试管之一中。然后,将3滴碘溶液添加到每个管中并混合。比较颜色并记录您的观察结果。水解:该部分分为三个部分(6A-C)。在6A中,我们将在试管中将0.5 mL 3 M HCl与5 ml的1%蔗糖溶液混合。在沸腾的水浴中加热20分钟,然后冷却并用1 M NaOH中和混合物,直到在pH纸上测试中性。将该溶液的8-10滴转移到小试管中。接下来,将1毫升Fehling溶液A与1 mL Fehling溶液B混合,然后将其添加到包含水解的蔗糖的小试管中。在沸水浴中加热几分钟。记录您的观察结果。6b:在这一部分中,我们将在试管中将3 ml的1%淀粉与0.5 mL HCl混合。在沸水浴中加热10分钟,然后冷却并用1 M NaOH中和混合物,直到在pH纸上测试中性。将该溶液的8-10滴转移到小试管中。在沸水浴中加热几分钟。2。接下来,将1毫升Fehling溶液A与1 mL Fehling的溶液B混合,然后将其添加到包含水解淀粉的小试管中。记录您的观察结果。6C:使用步骤6B的剩余溶液,将1 mL传递到小试管中,并加入3滴碘溶液。记录您的观察结果,并将它们与尚未水解的淀粉的结果进行比较。发布实验室问题:1。基于实验每个部分的结果,确定您的未知组件并解释原因。将蔗糖的Fehling测试结果与水解蔗糖的测试结果进行了比较。您的结果告诉您什么?3。重写文本:讨论了Fehling对淀粉和水解淀粉的测试的结果。此外,在淀粉和水解淀粉上进行的碘测试进行了比较。阐明了“还原糖”的概念。此外,检查了Seliwanoff测试和碘测试中的水的目的。绘制了α-D-Fructose和β-D-Fructose的结构图。 分析了一种与Fehling试剂,Seliwanoff的试剂和Barfoed的试剂反应的未知碳水化合物。 关于碳水化合物的结论是根据其反应得出的。 对蔗糖和乳糖,葡萄糖和淀粉的区分以及葡萄糖和果糖进行了区分的测试以及每种测试的解释。 最后,检查所有二糖都不会使用酵母进行发酵的原因。绘制了α-D-Fructose和β-D-Fructose的结构图。分析了一种与Fehling试剂,Seliwanoff的试剂和Barfoed的试剂反应的未知碳水化合物。关于碳水化合物的结论是根据其反应得出的。对蔗糖和乳糖,葡萄糖和淀粉的区分以及葡萄糖和果糖进行了区分的测试以及每种测试的解释。最后,检查所有二糖都不会使用酵母进行发酵的原因。(注意:重写文本在应用“添加拼写错误(SE)”方法时保持文本的原始含义和结构。)
这项为期5天的动手课程将提供一系列的讲座和示范,这些讲座和示范涵盖了隔离,纯化和结构表征的理论和技术,对聚,寡糖和糖偶联物的特征。参与者将使用气液色谱质谱法(GC-MS)学习糖基残基和糖基 - 连接组成分析的理论和技术。这些用于衍生化糖样品的方法,使乙醇酸酯和三甲基甲硅烷基衍生物以及部分甲基化的乙醇乙酸酯的产生,受训者通过GC-MS进行了分析。讲座和演示将涵盖通过质谱和NMR对多糖进行结构分析的技术,以及使用色谱技术,单糖和单糖类和寡糖使用HPAEC分离和纯化多糖的方法。
单元 6 大分子 碳水化合物 单糖家族:醛糖和酮糖、三糖、四糖、戊糖和己糖。葡萄糖和果糖的呋喃糖和吡喃糖形式,葡萄糖的 Haworth 投影公式;葡萄糖的椅式和船式。双糖;还原糖和非还原糖的概念,麦芽糖、乳糖和蔗糖的 Haworth 投影。多糖、储存多糖、淀粉和糖原。结构多糖、纤维素、肽聚糖。脂质:储存和结构脂质的定义和主要类别。储存脂质。脂肪酸:结构和功能。必需脂肪酸。三酰甘油结构,结构脂质。磷酸甘油酯:构建块,一般结构。蛋白质:氨基酸,蛋白质的构建块。氨基酸的一般公式和两性离子的概念。蛋白质结构:一级、二级、三级和四级结构。核酸:核苷酸、DNA和RNA的结构;分子生物学中心法则的简要概念。
纤维素有多种形式,其中很大一部分来自生活垃圾和工业垃圾 [28]。半纤维素可能是各种聚合单糖的混合物,如醛己糖、甘露糖、半乳糖、木糖、阿拉伯糖、4-O-甲基葡萄糖醛酸和半乳糖醛酸残基 [39]。在硬木木聚糖中,主链由通过 β -(1,4)-糖苷键偶联并通过 α -(1,2)-糖苷键与 4-O-甲基葡萄糖醛酸基团分支的木糖单元组成 [38]。木质素是由苯丙烷类前体合成的芳香族化合物。聚合物的基本化学苯丙烷单元(主要是紫丁香基、愈创木基和对羟基苯酚)通过一组键连接在一起,形成基质。该基质含有多种有用的基团,如甲氧基和羰基,它们赋予聚合物有机化合物高极性[40]。
1。医学生物化学简介,生物化学在医疗保健,伦理学和责任以及生物化学基础中的作用。2。生物细胞,物理化学,液体和电解质稳态以及氢离子稳态。3。生物分子。•碳水化合物,脂质,蛋白质和氨基酸的功能和分类。•单糖,氨基酸和脂肪酸的立体异构体和化学。•蛋白质的结构组织和结构功能关系。血红蛋白和肌红蛋白,O2转运和存储的分子机制。镰状细胞贫血和themias的分子基础•肌肉收缩的分子机制。•血浆蛋白,其功能和临床意义。4。分子生物学和人类遗传学。•核苷酸及其衍生物,合成核苷酸。•人类遗传学。•分子遗传学和生物技术。•癌变的分子基础。5。免疫学。•免疫,抗原,抗体,Ag-ab反应,称赞系统的类型和概念。•免疫球蛋白 - 分类,功能,抗体多样性(免疫遗传学)。•身体的免疫反应,免疫缺陷疾病,超灵敏度,移植和恶性肿瘤的免疫学。
痴呆症患者的数量预计在我们的老龄化社会中将迅速增加,到2050年,全球约1.52亿。这对巨大的医疗,社会和经济影响构成了重大的健康问题[1]。除了最近有前途的lecanemab试验,该试验在阿尔茨海默氏病早期的安慰剂[2]中观察到认知能力下降的降低,目前尚无延迟或反向认知障碍的有效策略。预言认知能力下降的最有前途的策略是针对可修改的危险因素。认知功能障碍机制的主要参与者之一是炎症。慢性低度炎性应激通过细胞介导的免疫力导致氧化环境。这些神经炎症过程包括淀粉样变性,神经元死亡和神经变性。许多研究强调饮食对炎症开始和进展的关键影响。饱和脂肪酸和简单糖过量过量的西方饮食现在是已知的环境风险因素
zeeshan.haider@imbb.uol.edu.pk摘要β半乳糖苷酶是水解酶,可以在真菌,细菌和酵母等微生物以及植物,动物细胞和重组来源中找到。该酶用于两个目的:从乳糖不耐症的人那里消除乳糖并创建半乳糖化的商品。这项研究旨在隔离和优化从奶牛场附近收集的土壤样品中产生β-半乳糖苷酶的微生物。用于筛选X-gal(5-溴-4-氯-3- indoyl-β-d-半乳乙酰糖苷),使用具有蓝色的糖苷酶活性的指标,是一种蓝色的糖苷酶活性的指标。用pHAT7获得最大的酶产生,温度为37ºC。在蔗糖,硫酸铵,硫酸镁和小麦粉中观察到最大产生的其他因素。在酶测定中ONPG(正硝基苯基-β-半乳糖苷)中用作底物。 这些结果揭示了乳杆菌属。 产生从具有有利特征的土壤样品中获得的β-半乳糖苷酶在食品工业中具有至关重要的作用。 引言β-半乳糖苷酶是一种糖苷水解酶,通常称为乳糖酶。 该酶负责通过在水存在下打破糖苷键来使ꞵ-半乳糖苷酶的水解产生,从而将其分解成简单的单糖。半乳糖和酒精。 作为一个活跃的酶,β-半乳糖苷酶可以将β连锁半乳糖的残基与各种化合物分开,从而将乳糖散发到半乳糖和葡萄糖中。 最早发现的水解体之一是β-半乳糖苷酶(Husain,2010)。在酶测定中ONPG(正硝基苯基-β-半乳糖苷)中用作底物。这些结果揭示了乳杆菌属。产生从具有有利特征的土壤样品中获得的β-半乳糖苷酶在食品工业中具有至关重要的作用。 引言β-半乳糖苷酶是一种糖苷水解酶,通常称为乳糖酶。 该酶负责通过在水存在下打破糖苷键来使ꞵ-半乳糖苷酶的水解产生,从而将其分解成简单的单糖。半乳糖和酒精。 作为一个活跃的酶,β-半乳糖苷酶可以将β连锁半乳糖的残基与各种化合物分开,从而将乳糖散发到半乳糖和葡萄糖中。 最早发现的水解体之一是β-半乳糖苷酶(Husain,2010)。产生从具有有利特征的土壤样品中获得的β-半乳糖苷酶在食品工业中具有至关重要的作用。引言β-半乳糖苷酶是一种糖苷水解酶,通常称为乳糖酶。该酶负责通过在水存在下打破糖苷键来使ꞵ-半乳糖苷酶的水解产生,从而将其分解成简单的单糖。半乳糖和酒精。作为一个活跃的酶,β-半乳糖苷酶可以将β连锁半乳糖的残基与各种化合物分开,从而将乳糖散发到半乳糖和葡萄糖中。最早发现的水解体之一是β-半乳糖苷酶(Husain,2010)。乳糖 - 水解酶,β-半乳糖苷酶是一种水解乳糖的酶,因此被认为是乳制品行业的基本酶。β-半乳糖苷酶是一种极为必要的酶,它通过破坏乳糖(牛奶甜糖)来完全消化牛奶。这种类型的酶主要出现在微生物中(Burn,2012),动物器官和植物,例如杏仁,苹果,桃子和杏子。除了其水解作用外,它还用于生产含有乳糖的人含量较低的食品。对于使用环境污染物奶酪乳清的利用也至关重要(Gandhi等,2018),通过降低
糖生物学中的跨性识别是生物学上常规蛋白质与生物聚糖的对映异构体之间的相互作用(例如,L蛋白与L-己糖结合的L蛋白质与L-Hexoses结合)与生命王国的生物体中的相互作用。通过对称性,它还描述了手性镜面蛋白与正常D-聚糖的相互作用。跨性识别的知识对于理解现有生命形式与人造镜像形式的潜在相互作用至关重要,但是目前已知的蛋白质 - 聚糖相互作用规则不足。为了构建一种学习这种相互作用的方法,我们构建了机器学习模型,以预测代表原子图的蛋白质和聚糖之间的结合强度,而不是单糖。基于聚糖的基于原子Q -gram和Morgan指纹(MF)表示,可以训练ML模型,以预测所有天然聚糖的聚糖,糖化化合物和对映异构体的凝集素结合特性。对此训练的关键是将不同的数据合并 - 某些数据与来自Glycan微阵列的相对荧光单元(RFU),而来自ITC的K d值的其他数据则是在特定的凝集素浓度下使用通用的“分数结合”参数F。MCNET是一个完全连接的神经网络体系结构,将MF和浓度(C)作为输入,并返回147个凝集素的F。MCNET的性能与Glynet模型相媲美,并且通过代理与其他最新的最先进的模型来预测蛋白质 - 聚糖相互作用的强度。MCNET有效预测了糖化化合物与甘叶蛋白1、3和7的结合。糖化化合物)。从基于单糖的描述中脱离,使MCNET可以预测跨性识别。我们使用液态聚糖阵列来验证一些预测,例如L-甘露糖与D-Mannose结合凝集素,纯化的CONA和DC-SIGN显示在细胞上的DC-SIGN以及L-MAN与半乳糖糖结合的凝集素的弱结合。MCNET的原子级输入使得从生活和非聚糖结构的所有王国中的各种聚糖中结合蛋白质 - 聚糖数据是可能的(例如,通用分数结合参数使得可以统一不同的定量观测值(K D / IC 50,RFU,色谱保留时间等)。我们认为,这种方法将有助于从不同的糖生物学数据集中合并知识,并预测与当前ML模型无法获得的不常见/不自然的聚糖的蛋白质相互作用。
考生应能识别单糖(分子式 - C n (H 2 O) n )的例子,包括:丙糖(甘油醛)、戊糖(核糖、脱氧核糖)和己糖(α- 和 β- 葡萄糖、果糖、半乳糖)。考生应能识别双糖(分子式 - C 12 H 22 O 11 )的例子,包括:蔗糖(葡萄糖-果糖)、麦芽糖(α- 葡萄糖 - α- 葡萄糖)和乳糖(葡萄糖-半乳糖)。考生应能识别出以下多糖的例子:淀粉,α-葡萄糖的聚合物(由直链淀粉和支链淀粉组成),糖原,α-葡萄糖的聚合物(支链结构),纤维素,β-葡萄糖的聚合物和几丁质,β单体的聚合物,其中一些-OH基团被含氮的乙酰胺基团取代。纤维素和几丁质是结构相似的多糖,相邻的单体彼此扭转180°,链之间形成氢键,形成微纤维。考生应能将这些分子的性质和结构与其功能联系起来。这应包括溶解度、强度、能量含量和渗透效应。
亚麻(Linum Usitatissimum L.)是一种工业重要性,其纤维目前用于高价值纺织品应用,复合增援部队以及自然致动器。人类对这种纤维丰富的植物的兴趣可以追溯到几千年,包括古埃及,那里的亚麻在各种quotidian物品中广泛使用。尽管亚麻纤维的最新技术发展继续通过科学研究多样化,但《亚麻的历史使用》也为今天提供了丰富的课程。通过仔细检查古埃及和现代亚麻纤维,本研究旨在进行从纱线到纤维细胞壁尺度的多尺度表征,将结构和多糖含量的差异与亚麻的机械性能和耐用性联系起来。在这里,通过扫描电子显微镜和纳米力学研究来丰富多尺度的生化研究。关键发现是纤维素特征,结晶度指数和古代纤维和现代纤维之间的局部机械性能的相似性。从生物化学上讲,单糖肛门,深紫外和NMR的研究表明,古代纤维表现出较少的果胶,但类似的半纤维素含量,尤其是通过尿酸和半乳糖,表明这些非晶体成分的敏感性。