输入-处理-输出 计算机是一台机器。它也按照 IPO 循环工作。计算机接受数据、处理数据并给出有意义的结果。数据的输入、处理和输出过程称为 IPO(输入 - 处理 - 输出)循环。 计算机系统 计算机系统被定义为用于从数据生成信息的机器。数据是原始事实和数字。信息是有意义的数据。 计算机系统由不同的部分组成,它们共同使其工作。这些部分是:硬件和软件。 你在电脑上玩游戏。游戏是软件的一个例子,鼠标、键盘、显示器和操纵杆等是硬件的例子。你在画图程序中使用鼠标绘制图片。画图程序是软件的一个例子,鼠标是硬件的一个例子。你可以触摸或感觉到硬件部件,但不能触摸软件
单载流子信息处理设备内的连接需要传输和存储单个电荷量子。单个电子在被限制在移动量子点中的短小、全电 Si/SiGe 穿梭设备(称为量子总线 (QuBus))中被绝热传输。这里我们展示了一个长度为 10 μ m 且仅由六个简单可调的电压脉冲操作的 QuBus。我们引入了一种称为穿梭断层扫描的表征方法,以对 QuBus 的潜在缺陷和局部穿梭保真度进行基准测试。单电子穿梭穿越整个设备并返回(总距离为 19 μ m)的保真度为 (99.7 ± 0.3) %。使用 QuBus,我们定位和检测多达 34 个电子,并使用任意选择的零电子和单电子模式初始化一个由 34 个量子点组成的寄存器。 28 Si/SiGe 中的简单操作信号、与工业制造的兼容性以及低自旋环境相互作用,有望实现自旋量子比特的长距离自旋守恒传输,从而实现量子计算架构中的量子连接。
为了最大程度地减少与强制施用相关的纵向成像和潜在风险的辐射暴露,采取了二维(2D)非对比度轴向轴向单板CT CT,而不是在临床实践中常见的三维(3D)体积CT。然而,很难在纵向成像中找到相同的横截面位置,因此在不同年内捕获的器官和组织存在实质性变化,如图1。在2D腹部切片中扫描的器官和组织与身体成分措施密切相关。因此,增加的位置差异可以准确地分析身体组成的挑战。尽管有这个问题,但尚未提出任何方法来解决2D切片中位置差异的问题。我们的目标是减少位置方差在人体组成分析中的影响,以促进更精确的纵向解释。一个主要的挑战是,在不同年内进行的扫描之间的距离是未知的,因为该切片可以在任何腹部区域进行。图像注册是在其他情况下用于纠正姿势或位置错误的常用技术。但是,这种方法不适合解决2D采集中的平面运动,其中一种扫描中出现的组织/器官可能不会出现在另一种扫描中。基于参考。13,图像协调方法分为两个主要组:深度学习和统计方法。值得注意的统计方法包括战斗14及其变体,15-17 Convbat,18和贝叶斯因子回归。19然而,与生成模型不同,统计方法通常缺乏对我们方案至关重要的生成能力。基于深度学习的现代生成模型最近在生成和重建高质量和现实的图像方面取得了重大成功。20 - 26生成建模的基本概念是训练生成模型以学习分布,以便生成的样品 ^ x〜pdð ^xÞ来自与训练数据分布x〜pdðxÞ的分布相同。27通过学习输入和目标切片之间的联合分布,这些模型可以有效地解决注册的局限性。变化自动编码器(VAE),28是一种生成模型,由编码器和解码器组成。编码器将输入编码为可解释的潜在分布,解码器将潜在分布的样本解码为新数据。生成对抗网络(GAN)20是另一种类型的生成模型,其中包含两个子模型,一个生成新数据的生成器模型和一个区分实际图像和生成图像的歧视器。通过玩这个两人Min-Max游戏,Gans可以生成逼真的图像。Vaegan 29将GAN纳入VAE框架中,以创建更好的合成图像。通过使用歧视器来区分真实图像和生成的图像,Vaegan可以比传统的VAE模型产生更真实和高质量的图像。但是,原始的vaes和gan遭受了缺乏对产生图像的控制的局限性。有条件的GAN(CGAN)30和CONDINATION VAE(CVAE)31解决了此问题,该问题允许生成具有条件的特定图像,从而对生成的输出提供了更多控制。但是,这些条件方法中的大多数都需要特定的目标信息,例如目标类,语义图或热图,在测试阶段32作为条件,这在我们的情况下是不可行的,因为我们没有任何可用的直接目标信息。
微生物驱动全球碳循环1,并可以与宿主生物体建立象征关系,从而影响其健康,衰老和行为2 - 6。微生物种群通过改变可用的代谢物池和专门的小分子7、8的产生与不同的生态系统相互作用。这些群落的巨大遗传潜力被人相关的微型iSms举例说明,该微生物ISM的编码是人类基因组9、10的大约100倍。然而,这种代谢潜力在现代的未纳入代谢组学实验中仍未被反射,其中通常<1%的注释分子可以归类为微生物。这个问题特别影响质谱(MS)基于非靶向代谢组学,这是一种通过微生物11所产生或修饰的分子11的常见技术,该技术在复杂生物学样品的光谱注释中著名地挣扎。这是因为大多数光谱参考文献都偏向于原代代谢产物,药物或工业化学品的市售或以其他方式的标准。即使在注释代谢物时,也需要进行广泛的文献搜索,以了解这些分子是否具有微生物起源并识别各自的微生物生产者。公共数据基础,例如Kegg 12,Mimedb 13,Npatlas 14和Lotus 15,可以帮助进行这种解释,但它们大部分限于已建立的,很大程度上基因组所涉及的代谢模型或完全表征和发行的分子结构。此外,虽然旨在从机械上开发了旨在询问肠道微生物组的靶向代谢组学努力16,但它们仅着眼于相对较少的商业可用的微生物分子。因此,尽管MS参考文库不断扩大,但大多数微生物化学空间仍然未知。为了填补这一空白,我们已经开发了Microbemasst(https://masst.gnps2.org/microbemasst/),这是一种利用的搜索工具
超敏光谱是中红外(MIR)技术的重要组成部分。然而,miR探测器的缺点在单光子水平上对稳健的miR光谱构成了挑战。我们提出了miR单光子频率上转换光谱非局部将miR信息映射到时间do-main。来自自发参数下调的宽带miR光子频率向上转换为具有量子相关性保存的近红外带。通过纤维的组延迟,在1.18微米的带宽为2.76至3.94微米内的miR光谱信息被成功地投影到相关光子对的到达时间。在每秒6.4×10 6光子的条件下,使用单像素检测器证明了具有单光子敏感性的聚合物的传输光谱。开发方法绕过扫描和频率选择不稳定性,它在不断发展的环境中固有的兼容性和各种波长的可伸缩性而引人注目。由于其高灵敏度和鲁棒性,生化样品的表征和量子系统的弱测量值可能是预见的。
South32是一家全球多元化的采矿公司。我们的目的是通过开发自然资源,改善人们的生活和几代人的生活来有所作为。我们受到所有者和合作伙伴的信任,以实现其资源的潜力。我们从我们在澳大利亚,南部非洲和南美的业务中生产商品,包括铝土矿,氧化铝,铝,锌,铅,铅,银,镍和锰。我们还拥有高质量开发项目和选择的投资组合,以及探索前景,这与我们将投资组合重塑的策略一致,这对于低碳未来至关重要。
当前的突破与机器学习有关,机器学习是指计算机系统无需遵循明确编程的指令,通过接触数据来提高性能的能力。深度学习 (DL) 是机器学习的一个子集,它随着更深的神经网络 (NN) 而出现,近年来性能得到了巨大提升。深度学习为计算机视觉和自然语言处理 (NLP) 中的许多问题带来了显著的改进,实现了新的用例并加速了人工智能的采用。这就是为什么 EASA 人工智能路线图 1.0 和此 1 级和 2 级人工智能指南专注于数据驱动的人工智能方法的原因。然而,最初的范围仅限于监督学习技术。通过计划扩展到无监督和强化学习,这一限制将在本指导文件的下一版本中消除。