Metacaulk® 350i 是一种单组分通用防火密封剂和烟雾密封剂,适用于建筑接缝和贯穿孔。Metacaulk 350i 是一种水基、膨胀性极强、不下垂的填缝级密封剂,易于涂抹和改造。它固化后会形成弹性密封,适用于预计会发生动态运动的地方。发生火灾时,Metacaulk 350i 将防止火焰、烟雾、热气和水通过接缝开口和贯穿孔蔓延。使用时无需稀释或混合。安装时无需特殊技能。Metacaulk 350i 可使用传统填缝枪、散装枪涂抹,也可以从桶中抹平。对于大型应用,可以直接从桶中泵送。根据 ASTM E1966 (UL 2079) 测试标准,Metacaulk 350i 系统的额定时间为 1、2 和 3 小时。Metacaulk 350i 在潮湿阶段和干燥阶段均能通过多种杀菌剂防止霉菌生长。
经验证,该绝缘材料的属性符合 ICC 700-2008 第 703.2.1.1.1(c) 节中作为不透气绝缘材料的规定。请注意,这些领域的合规性决定权在于本报告的用户。用户将被告知特定于项目的规定可能取决于是否满足特定条件,而这些条件的验证超出了本报告的范围。这些规范或标准通常会提供补充信息作为指导。3.2 表面燃烧特性:UTC 7040-0.5 和 7041-0.5 ICC 绝缘材料的最大厚度为 5.8 英寸(147 毫米),标称密度为 0.5 磅/立方英尺(8 千克/立方米),按照 ASTM E84(UL 723)进行测试时,火焰蔓延指数为 25 或更低,烟雾发展指数为 450 或更低。如果安装过程与建筑物内部之间通过规范规定的 15 分钟热障隔开,则没有厚度限制。3.3 热阻:UTC 7040-0.5 和 7041-0.5 ICC 绝缘材料在平均温度为 75°F (24°C) 时的热阻 R 值如表 1 所示。3.4 透气性:根据 2015 和 2012 IRC 第 R806.5 节(2009 IRC 第 R806.4 节)和 2015 IBC 第 1203.3 节,根据 ASTM E283 进行的测试,UTC 7040-0.5 和 7041-0.5 ICC 绝缘材料厚度至少为 3.5 英寸(89 毫米),被视为不透气的绝缘材料。 3.5 UTC 7030-FS1 膨胀型涂料:UTC 7030-FS1 膨胀型涂料由 Urethane Technology Company, Inc. 生产,是一种水基单组分涂料,以 5 加仑(19L)桶和 55 加仑(208L)圆桶包装。如果将涂料存放在工厂密封的容器中,温度在 60°F (15.6°C) 和 80°F (26.7°C) 之间,则该涂料的保质期为 12 个月。3.6 DC 315 涂料:DC 315 涂料由 International Fireproof Technology Inc./Paint to Protect Inc. (ESR-3702) 生产,是一种单组分水基液体应用膨胀型涂料。涂料以 5 加仑(19 L)桶和 55 加仑(208 L)桶装供应,在 50°F(10°C)至 80°F(27°C)温度下储存在工厂密封的容器中时,保质期为 24 个月。4.0 安装
Metacaulk 150+ 是一种单组分通用防火密封剂、隔音密封剂和烟雾密封剂,适用于建筑接缝和贯穿孔。Metacaulk 150+ 是一种水基、不下垂的填缝级密封剂,易于涂抹和改造。它固化后会形成弹性密封,适用于预计会发生动态运动的地方。发生火灾时,Metacaulk 150+ 将防止火焰、烟雾、热气和水通过接缝开口和贯穿孔蔓延。使用时无需稀释或混合。安装时无需特殊技能。Metacaulk 150+ 可使用传统填缝枪、散装枪涂抹,也可以从桶中抹平。对于大型应用,可以直接从桶中泵送。根据 ASTM E814 (UL 1479) 和 ASTM E1966 (UL 2079) 测试标准,Metacaulk 150+ 系统的额定使用寿命长达 4 小时。Metacaulk 150+ 在潮湿阶段和干燥阶段均能通过多种杀菌剂防止霉菌生长。
抽象的水凝胶微球是一种新型的功能材料,引起了各种田间的关注。微流体是一种控制和操纵微米尺度的流体的技术,由于其能够产生具有控制的几何形状的均匀微球,因此已经成为一种有前途的水凝胶微球来制造水凝胶微球的方法。通过微流体设备的开发,可以构建具有多个结构的更复杂的水凝胶微球。本综述概述了设计和工程水凝胶微球的微孔进步。首先要引入水凝胶微球和微流体技术的特征,然后讨论用于制造微流体设备的材料选择。然后描述了用于单组分和复合水凝胶微球的微流体设备的进展,还提供了优化微流体设备的方法。最后,这篇综述讨论了将来微流体物质在水力微球中的关键研究方向和应用。
片上纳米量波导传感器是一种有前途的解决方案,用于使用中红外(miR)区域中的吸收菌印刷物进行微型化和无标记的气体混合物检测。然而,由于吸收光谱的重叠,有机气体混合物的定量检测和分析仍然具有挑战性,报道较少。在这里,将人工智能(AI)辅助波导“光子鼻”作为MIR中的气体混合物分析的增强传感平台提出。凭借支持的波导设计和机器学习算法的帮助,将二元有机气体混合物的miR吸收光谱与任意混合率区分开,并分解为单组分光谱以进行浓度预测。结果,实现了19个混合比的93.57%的分类。此外,气体混合物频谱分解和浓度预测显示,平均根平方误差为2.44 vol%。这项工作证明了MiR波导平台的更广泛的感测和分析能力的潜力,用于多个有机气体成分,用于MIR片段光谱。
Metacaulk 150+ 是一种单组分通用防火密封剂、隔音密封剂和烟雾密封剂,适用于建筑接缝和贯穿孔。Metacaulk 150+ 是一种水基、不下垂的填缝级密封剂,易于涂抹和改造。它固化后会形成弹性密封,适用于预计会发生动态运动的地方。发生火灾时,Metacaulk 150+ 将防止火焰、烟雾、热气和水通过接缝开口和贯穿孔蔓延。使用时无需稀释或混合。安装时无需特殊技能。Metacaulk 150+ 可使用传统填缝枪、散装枪涂抹,也可以从桶中抹平。对于大型应用,可以直接从桶中泵送。根据 ASTM E814 (UL 1479) 和 ASTM E1966 (UL 2079) 测试标准,Metacaulk 150+ 系统的额定使用寿命长达 4 小时。Metacaulk 150+ 在潮湿阶段和干燥阶段均能通过多种杀菌剂防止霉菌生长。
可拉伸电子产品在医学、传感和机器人领域的应用越来越受到关注。当前的可拉伸材料要么是本质上可拉伸的,要么是图案化为可拉伸结构,要么是通过形成某种可拉伸材料和具有某些所需特性(例如高导电性)的刚性材料的复合材料而制成的。然而,文献中缺乏可拉伸磁性材料,而将可拉伸性和磁性相结合的设备仅限于使用串行制造工艺,例如将毫米级磁体嵌入聚合物基质中。在这项研究中,我们介绍了一种可拉伸复合硬磁墨水,该墨水由钡六铁氧体纳米颗粒与 9510 单组分环氧灌封化合物和二(丙二醇)甲醚混合而成。然后使用丝网印刷方法,将该墨水用于制造磁应变传感器,作为材料和工艺的概念验证。结果表明,可以制成一种可拉伸的硬磁墨水,其由钡六铁氧体颗粒夹杂物提供 20 kA/m 的剩磁,并由环氧树脂提供至少 100% 应变的拉伸性。
绝大多数非常规超导体都具有简单的单组分相图。这是令人惊讶的,因为 3 He 中的超流动性质( 1 )以及可以预期简并或近简并现象将由许多非常规超导电子机制产生的事实( 2 )表明,许多材料应该具有温度 - 磁场相图,并且在超导状态下不同超导序参量之间会发生转变。然而,到目前为止,唯一已证实在环境压力下具有此类相图的化学计量超导体是 UPt 3 ( 3 – 5 )。本文,我们报告在重费米子材料 CeRh 2 As 2 中发现了此类相图。实验表明,尽管 CeRh 2 As 2 的超导转变温度 T c 仅为 0.26 K,但它具有高达 14 T 的极高超导临界场。此外,当沿晶体 c 轴施加磁场时,超导状态在 ~4 T 处包含一个明确的内部相变,我们使用几个热力学探针对其进行了识别。我们还认为,这些观察结果来自与 UPt 3 不同的物理原理;CeRh 2 As 2 的关键超导特性可能是局部反演对称性破坏的表现,以及随之而来的 Rashba
理解热力学定律中材料的平衡性质对于物理学、化学、材料科学、化学工程、机械工程等许多学科都至关重要。在本课程中,我们将回顾统计热力学理论,这是一种概率方法,它根据材料成分(原子、分子等)的微观变量来描述材料的平衡性质。此外,我们研究热力学定律在材料平衡和性质中的应用,为处理材料中的一般现象奠定了基础,包括相变、化学反应、磁性、弹性等。在课程的前半部分,我们将探讨统计力学的基本概念和技术,它为我们提供了研究多粒子系统的理论工具。在课程的第二部分,我们将研究热力学概念在从单组分到多组分系统的相平衡、相变和相图分析中的应用。最后,我们将结合整个课程中讨论的理论工具,通过计算技术检查真实物理系统的热力学性质,包括 i) 最先进的量子力学计算机程序(例如 abinit)以探索原子的微观行为,以及 ii) 用于热力学建模的计算机程序,以获得宏观平衡状态并构建相图(例如 FactSage、Pandat)。
背景:搜索手性超导体有几个令人信服的理由,其中超导性与明显的时间反向对称性断裂并存。首先,在大多数固体中,与电子配对相关的能量尺度远小于典型的动力学能量,因此超导性的出现取决于电子分散体的退化:e(k)= e(-k)。这种情况让人联想到筑巢,最终受时间逆转或反转等对中的控制,这甚至使相对较弱的吸引人的相互作用甚至具有深远的影响。因此,在没有这种对称性的情况下,观察超偏性的观察强烈表明存在新的物理学。其次,寻找手性超导体与追求拓扑超导的追求密切相关,拓扑超导能力是一种凝结物理学的圣杯。具有无旋转单组分Fermi表面的二维超导体很可能表现出时间雷达对称性破坏P + IP配对。这种类型的超导性与涡流和边缘中Majorana零模式的存在有关,这是拓扑量子计算的关键资源。这种p波配对被认为是在超氟中实现的,在ν= 5