开发 - 试制耐振单腿基本结构模块,并在振动环境下(正弦波33Hz、最大加速度5G)验证发电操作(振动环境条件以JIS汽车零部件耐振要求为准) - 在上述振动环境下,模块发电耐久性达到100小时以上 - 耐振模块结构及相关周边技术的知识产权申请 自2017年度起,针对上述目标2的内容,我们决定在振动环境下(正弦波33和67Hz、最大加速度5和10G)验证发电操作。 为了实现这些目标,我们将采取以下步骤: ①提高环保型Mg2Si热电发电材料的热耐久性经过申请人迄今为止的努力,已确认Mg2Si材料本身的发电元件在空气中600℃下经过3000小时以上仍能保持稳定。此项委托工作将确保引入热电池所需的模块化结构的耐用性。 ② 开发最适合发电的新型高耐久单腿结构模块 本次委托项目中,Mg2Si热电材料具有基本热电发电能力高、在热电材料中重量最轻、环境负荷小等特点。为此,采用了单腿型热电发电模块结构,该结构仅由n型半导体Mg2Si构成。 ③在发电环境中,使用振动试验机,在接近真实环境的条件下评估发电特性。通过叠加汽车零部件通常所要求的水平的振动环境(JIS规定的汽车零部件耐振环境:正弦波加速度5G、33Hz),努力确保发电模块的耐久性。 B.热电池专用DC-DC电源转换器实用化基本要素技术本项目的目标如下: 目标1:专用于热电发电模块的电容器堆叠型DC-DC转换器,转换效率达80%
对于临床怀疑为深静脉血栓形成 (DVT) 的患者,诊断管理中一线影像学检查是压迫超声检查 (CUS)。从历史上看,造影静脉造影是 DVT 诊断的金标准,可评估下肢远端和近端深静脉。当 CUS 出现时,人们发现它对远端 DVT 的诊断准确率与静脉造影相比并不理想。然而,技术的进步使 CUS 能够更好地显示深静脉系统,目前,临床实践中交替使用三种 CUS 策略:单次有限、连续有限和整条腿 CUS。有限 CUS 也称为两点、快速或近端 CUS,由于仅评估下肢近端深静脉(即腘静脉或更近端的血管),因此更容易且更快速地执行。它可以采用单次或连续方法进行。后者包括在初次 CUS 阴性后 5 到 10 天进行第二次 CUS 检查,以评估可能的远端 DVT 是否已蔓延至近端静脉。全腿 CUS 也称为完整 CUS,是对下肢远端和近端深静脉的一次检查,从而检测远端和近端 DVT。它比有限 CUS 相对耗时且技术要求更高。因此,不同中心的可用性可能有所不同,取决于专业知识和繁忙急诊室的可行性。不同 CUS 策略的相对诊断性能尚不清楚。目前的指南对首选 CUS 策略的建议相互矛盾[1-5]。该指南主要基于策略之间的间接比较,因为该特定领域的个体内比较和随机试验很少。本系统回顾了已发表的文献并对报告结果进行了荟萃分析,旨在总结和比较单次有限、连续有限和整条腿 CUS 对 DVT 的诊断准确性。
位英语 考试 特点 , 采用多 功能 的编排 方法 , 不仅 有助 于考生 理解记 忆单 词 , 准 确掌 握词的 运用 , 而且 能够 使 考生 快 速扩
回归因子预处理的信号中分别提取了常用的 fNIRS 特征 , 并比较了它们的质量 。 结果表明 , 基于 GLM 的方法能够对大脑活动提供更好的单次实验评估 ,
EksoNR 是一种可穿戴的、由电池供电的仿生外骨骼,可帮助下肢无力或瘫痪的人在水平面上站立和行走。电机为髋关节和膝关节提供动力,所有运动都通过特定的患者动作或使用外部控制器启动。EksoNR 可以为下肢提供双侧辅助或单侧辅助。EksoNR 可以编程为提供自适应辅助,根据患者的表现不断调整运动输出。它还可以提供固定的上限辅助量,为一条腿或两条腿提供高达预定的最大运动功率。腿也可以设置为自由,有或没有辅助,让患者以任何他们想要的方式行走。EksoNR 可以根据患者的精确需求进行调整。设备功能:坐立、行走、站坐、PreGait 患者要求:主动参与、重心转移、在需要帮助的情况下保持平衡使用环境
荧光寿命成像显微镜(FLIM)是区分荧光分子或探测其纳米级环境的强大工具。传统上,FLIM使用时间相关的单光子计数(TCSPC),由于其对点检测器的依赖,因此精确但本质上的低通量。尽管时间门控摄像机已经证明了具有致密标记的明亮样品中高通量FLIM的潜力,但尚未广泛探索它们在单分子显微镜中的使用。在这里,我们报告了使用商业时间门控的单光子摄像头快速准确的单分子flim。我们优化的采集方案以仅比TCSPC少三倍的精度实现单分子寿命测量,同时允许同时进行超过3000个分子的多种多样。使用这种方法,我们证明了在受支持的脂质双层上的大量标记的孔形成蛋白以及在5-25 Hz处的多重时间单分子恢复能量传递测量值的平行寿命测量。此方法具有前进的多目标单分子定位显微镜和生物聚合物测序的有力希望。
•已经设计了从SCP中去除核酸的各种方式:•生长和细胞生理方法:细胞的RNA含量取决于生长速率:生长速率越高,RNA含量越高。因此,生长速率是减少核酸的一种手段。高增长是降低SCP成本的要求之一,因此该方法可能只有有限的用途。•用化学物质提取:稀释碱(例如NaOH或KOH)将很容易水解RNA。热10%氯化钠也可用于提取RNA。使用这些方法通常会破坏细胞。在某些情况下,可以提取,纯化和浓缩蛋白质。•使用胰汁:来自牛胰汁的RNAase,它是热稳定的,用于在80°C下水解酵母RNA,温度更可渗透。•内源性RNA的激活:生物体本身的RNA酶可以被热震或化学物质激活。酵母的RNA含量已以这种方式降低。
1 Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA 2 Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, USA 3 Cryos International Sperm and Egg Bank, Denmark 4 Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, USA 5 Program美国病儿童医院彼得·吉尔根研究与学习中心,加拿大6. ‡对应:gilad.evrony@nyulangone.org摘要突变在整个生命的每个细胞的基因组中都积累,导致癌症和其他遗传疾病1-4。几乎所有这些镶嵌突变始于DNA的两条链中的核苷酸不匹配或损伤,如果未经修复或误用5。但是,当前的DNA测序技术无法解决这些初始的单链事件。在这里,我们开发了一种单分子的长读测序方法,该方法在存在于DNA的一条或两条链中时,可以实现单基分子的单分子保真度。它还检测到单链胞嘧啶脱氨酸事件,这是一种常见的DNA损伤。我们介绍了来自不同组织的110个样本,包括来自患有癌症的个体综合症的个体,并定义了第一个单链不匹配和损害特征。我们找到了这些单链特征与已知的双链突变特征之间的对应关系,从而解决了起始病变的身份。与仅缺乏聚合酶校对的样品相比,在不匹配修复和复制性聚合酶校对缺乏的肿瘤均显示出独特的单链错配模式。在线粒体基因组中,我们的发现支持一种主要发生在复制过程中的诱变机制。由于先前研究询问的双链DNA突变只是突变过程的终点,因此我们在单分子分辨率下检测启动单链事件的方法将启用有关在多种情况下突变如何在癌症和年龄中出现的新研究。
