超敏光谱是中红外(MIR)技术的重要组成部分。然而,miR探测器的缺点在单光子水平上对稳健的miR光谱构成了挑战。我们提出了miR单光子频率上转换光谱非局部将miR信息映射到时间do-main。来自自发参数下调的宽带miR光子频率向上转换为具有量子相关性保存的近红外带。通过纤维的组延迟,在1.18微米的带宽为2.76至3.94微米内的miR光谱信息被成功地投影到相关光子对的到达时间。在每秒6.4×10 6光子的条件下,使用单像素检测器证明了具有单光子敏感性的聚合物的传输光谱。开发方法绕过扫描和频率选择不稳定性,它在不断发展的环境中固有的兼容性和各种波长的可伸缩性而引人注目。由于其高灵敏度和鲁棒性,生化样品的表征和量子系统的弱测量值可能是预见的。
摘要 较高的视线指向精度是提高光电干扰吊舱激光对抗能力的前提。传统光电吊舱中电视跟踪时延降低了系统相位裕度、系统稳定性及视线指向精度。针对这一不足,在两轴四框架结构的内框架位置环中引入归一化LMS算法来补偿电视摄像机时延,使吊舱避免系统相位裕度降低,同时采用快速反射镜系统来提高视线指向精度。首先,提出一种归一化LMS算法;其次,设计了一种外框架模拟控制器和内框架滞后超前控制器的复合控制结构;最后,分析了FSM波束控制精度。实验结果表明,归一化LMS算法几乎没有时延;而且,其方位角和俯仰波束控制精度较传统光电吊舱分别提高15倍和3倍。
图2幼虫SEZ的感觉域:长度截面视图。(a,b)幼虫晚期SEZ的示意性侧面视图(a)和腹侧视图(b)。感觉隔室的颜色编码如(a)底部的钥匙所述。进入神经胶质的神经是阴影灰色的;神经组边界和柱状神经胶质结构域由孵化线表示。(c - e)用PEB-GAL4> UAS-MCD8-GFP(绿色;感觉轴突)标记的第三龄幼虫标本的共聚焦部分的Z-Projections。抗神经毒素(洋红色)标记次生谱系和区域; Neuropil在所有面板中均由抗DN-钙粘蛋白(蓝色)标记。(c)中央神经胶质结构域的副臂板z预测。(d,e)表面水平的水平投影(d;神经皮腹面上方约10米)和中央水平(E;腹表面上方约20 l m;参见面板H)。孵化的线划分柱神经型结构域的边界,如随附的纸张所定义(Hartenstein等,2017)。在PEB-GAL4阳性区域的(E)点中的箭头从CSC感觉域继续向前向中央trito-Cerebrum前进; (e)中的箭头指示通过触角神经进入的感觉传入,然后绕过触角(Al)到达tritoceRebrum。(f,g)。第三龄幼虫SEZ晚期的副臂切片(F)和数字旋转的额叶(G)的Z-projctions显示了PEB-GAL4阳性感觉末端(绿色)和纵向轴突段与Anti-Fasticlin II(Magenta)标记的纵向轴突。绿色孵化线表示(d)和(e)中显示的水平平面。(H)幼虫SEZ的示意性横向视图,说明了该图和图3中的面板(d,e)中显示的Z射击平面。Blue hatched lines, oriented perpendicularly to the neuraxis and roughly parallel to neuromere boundaries (grey hatched lines), represent frontal planes at level of anterior half of prothoracic segment (T1ant), posterior half of prothoracic segment (T1post), tritocerebrum (TR), mandibula (MD), maxilla (MX), and labium (lb),图3的面板(a - f)中显示。bar:25 L m(c - g)
航空公司,因为产品创新机会更多。然而,经济舱的服务通常灵活性较低,即使这些座位票被视为航空公司的“主营业务”。航空公司在特定飞机上安装的座位越多,其在同一航线上获得的利润就越高。航空公司客户通常直接与原始设备制造商 (OEM) 合作,制定飞机内部定制文件或乘客住宿布局 (LOPA)。美国联邦航空管理局 (FAA) 将 LOPA 定义为记录飞机客舱内部布局的工程图,包括座椅、出口、盥洗室和厨房等。根据航空公司选择单舱、双舱还是三舱座位配置,航空公司可以对每条航线销售的座位数量进行大量控制。LOPA 和座椅配置中的一个关键参数是座椅间距,指的是两排连续座椅之间相同两点之间的距离。
注释: 1.B 级温度范围为 -40 ℃ ~+85 ℃。 2.这些数据是按最初设计的产品发布的。 3.一次校准实际上是一次转换,因此这些误差就是表 1 和表 3 所示转换噪声的阶数。这 适用于在期望的温度下校准后。 4.任何温度条件下的重新校准将会除去这些漂移误差。 5.正满标度误差包括零标度误差 ( Zero-Scale Error )(单极性偏移误差或双极性零误 差),且既适用于单极性输入范围又适用于双极性输入范围。 6.满标度漂移包括零标度漂移 (单极性偏移漂移或双极性零漂移)且适用于单极性及 双极性输入范围。 7.增益误差不包括零标度误差,它被计算为满标度误差——对单极性范围为单极性偏移 误差,而对双极性范围为满标度误差——双极性零误差。 8.增益误差漂移不包括单极性偏移漂移和单极性零漂移。当只完成了零标度校准时,增 益误差实际上是器件的漂移量。 9.共模电压范围:模拟输入电压不超过 V DD +30mV ,不低于 GND-30mV 。电压低于 GND-200mV 时,器件功能有效,但在高温时漏电流将增加。 10.这里给出的 AIN ( + )端的模拟输入电压范围,对 TM7706 而言是指 COMMON 输入 端。输入模拟电压不应超过 V DD +30mV, 不应低于 GND-30mV 。 GND-200mV 的输入 电压也可采用,但高温时漏电流将增加。 11.VREF=REF IN ( + )- REF IN ( - )。 12.只有当加载一个 CMOS 负载时,这些逻辑输出电平才适用于 MCLK OUT 。 13.+25 ℃时测试样品,以保证一致性。 14.校准后,如果模拟输入超过正满标度 , 转换器将输出全 1, 如果模拟输入低于负满标度, 将输出全 0 。 15.在模拟输入端所加校准电压的极限不应超过 V DD +30mV 或负于 GND - 30mV 。 16.当用晶体或陶瓷谐振器作为器件的时钟源时 (通过 MCLK 引脚 ), V DD 电流和功耗 随晶体和谐振器的类型而变化 (见“时钟和振荡器电路”部分)。 17.在等待模式下,外部的主时钟继续运行, 5V 电压时等待电流增加到 150 μ A , 3V 电 压时增加到 75 μ A 。当用晶体或陶瓷谐振器作为器件的时钟源时,内部振荡器在等待 模式下继续运行,电源电流功耗随晶体和谐振器的类型而变化 (参看“等待模式” 一节)。 18.在直流状态测量,适用于选定的通频带。 50Hz 时, PSRR 超过 120dB (滤波器陷波 为 25Hz 或 50Hz )。 60Hz 时, PSRR 超过 120dB (滤波器陷波为 20Hz 或 60Hz )。 19.PSRR 由增益和 V DD 决定,如下:
它显示了药剂喷射持续时间、空气流量和速度、药剂/空气混合模式和火灾情景的相对重要性。火灾区域中药剂的合理目标浓度是所需的浓度
摘要:本文介绍了一种针对机场环境量身定制的新型自动吊舱四边形无人机系统的开发。使用Aurrigo Auto-Pod(AAP),多功能系统旨在将无人机固定在将视频图像(例如视频图像)传输到AAP的无人机,同时为无人机提供电源。通过开发基于新型模型的设计(MBD)方法,对束缚系统的动力学行为进行了分析。仿真结果证明了使用束缚无人机方法提高机场运营效率和安全性的潜在好处。该研究强调了潜在机场环境中无人机的控制动态和操作约束,证明了系统在严格的航空法规下运行的能力。