摘要 - 基于术前图像的术语脑移位降低了神经元研究系统的准确性。在本文中,可以通过计算脑移位的估计来解决此问题,该估计可用于更新术前的大脑图像。因此,可以提高导航的精度。在这方面,使用大脑变形和受约束的卡尔曼过滤器(ACKF)提出了一种脑移位估计方法。另外,当风险函数是估计误差方差时,获得的ACKF估计是最佳无偏见的最小值估计。此外,在ACKF和两种现有方法(即受约束的卡尔曼滤波器(CKF)和基于地图集的方法)之间进行了比较。比较表明,ACKF会导致更准确的估计,并且需要更少的计算时间。最后,通过模拟说明了提出的ACKF方法对CKF和基于ATLAS的方法的至高无上。
摘要:本文建立了一项准确且可靠的研究,用于估计锂离子电池的充电状态(SOC)。准确的状态空间模型用于确定电池非线性模型的参数。非洲秃鹰优化器(AVOA)用于解决识别电池参数以准确估算SOC的问题。一种混合方法由具有自适应无知的卡尔曼过滤器(AUKF)的库仑计数法(CCM)组成,以估计电池的SOC。在不同的温度下,对电池进行了四种方法,在包括负载和电池褪色之间有所不同。数值模拟应用于2.6 AHR松下锂离子电池,以证明混合方法对电荷估计的有效性。与现有的混合方法相比,建议的方法非常准确。与其他策略相比,所提出的混合方法实现了不同方法的最小误差。
TATE估计是电动汽车(EV)电池的关键任务。要估计的两个最重要的状态是电荷状态(SOC),与剩余练习范围以及健康状况(SOH)相关的情况(SOH)在其一生中相关的电池降解。SOC和SOH都是不可衡量的数量,其价值对于通知用户,控制动力总成和热管理系统,防止损坏和电池组过早老化至关重要。此外,尽管它们通常在非常不同的时间尺度上发生变化,但两个数量密切相互关联,因为充电状态是电池剩余容量的函数[1]。在数据驱动和基于模型的方法下都开发了几种联合SOC和SOH估计算法。基于模型的方法的优势是它们提供了对电池的见解
摘要- 为单引擎双座滑翔机上的有效载荷系统制造了定制锂离子电池。在形成电池管理系统的软件开发阶段,为了在充电和放电过程中提供安全性,需要一些参数来指示电池的状况。因此,在本研究中,在 42 Ah 锂离子电池中进行了电等效电路方法和自适应扩展卡尔曼滤波器中使用的充电状态估计过程。结果,平均绝对误差和均方根误差的值小于 1%。在实际过程中,从未发现过真正的误差值。给出噪声以确定扩展卡尔曼滤波器和自适应扩展卡尔曼滤波器 (AEKF) 算法之间的自适应能力。此外,将主 SoC 设置为某个值以查看估计精度。研究表明,该方法可以应用于有效载荷系统的 BMS 软件的开发。
1 东京大学地球行星科学系,日本东京 2 加州理工学院喷气推进实验室,美国加利福尼亚州帕萨迪纳 5 3 日本海洋地球科学技术署,日本横滨
摘要。随着后摩尔定律计算领域的出现,新的架构不断涌现。借助 IBM 的 TrueNorth 等复合、数百万连接的神经形态芯片,神经工程现在已成为这种新型计算范式中的可行技术。高能物理实验正在不断探索新的计算和数据处理方法,包括神经形态,以支持该领域日益增长的挑战并为未来的商品计算趋势做好准备。这项工作详细介绍了 IBM 的神经形态架构 TrueNorth 中用于并行和串行脉冲序列的卡尔曼滤波器实现的第一个实例。在多个模拟系统上测试了实现,并根据等效非脉冲卡尔曼滤波器评估了其性能。在改变权重和阈值寄存器的大小、用于编码状态的脉冲数量、用于空间编码的神经元块的大小以及神经元电位重置方案的同时,探索了实现的极限。
摘要:在现实生活中,由于各种测量局限性,登革热流行模型中的所有变量都可以测量。因此,需要一个工具来估计具有已知相关变量的未测量变量。估计非线性系统中变量的一种方法是扩展的卡尔曼滤波器(EKF)。接下来,使用这些估计的结果,将以疫苗接种的形式寻求最佳控制,以减少感染的数量。从仿真结果中可以得出结论,登革热模型的EKF状态估计足以估计在所选的干扰协方差范围内被随机变量干扰的状态。然后,发现干扰的标准偏差越小,开始时所需的最佳控制越小。因此,破坏越大,所花费的成本越大。
使用扩展卡尔曼滤波器对声纳浮标进行主动物体跟踪 1 Ch.Lakshmi Sravya、2 G.Mahesh、3 S.Koteswara Rao、4 B.Omkar Lakshmi Jagan 1,2,3 电子与计算机工程系、4 电子与电气工程系,K L 大学,贡土尔,印度 1 lakshmi.sravi7@gmail.com、2 mahesh88088@gmail.com、3 skrao@kluniversity.in、4 lakshmijagan@kluniversity.in 摘要:在水下,声纳浮标接收物体信息。声纳浮标生成物体距离和方位测量值。扩展卡尔曼滤波器用于处理噪声破坏的测量值,以生成物体运动参数 (OMP)。OMP通过超高频链路与飞机进行进一步处理。给出了模拟结果。关键词-全球定位系统、声纳浮标、物体运动分析、随机处理、统计随机处理
使用扩展卡尔曼滤波器对声纳浮标进行主动物体跟踪 1 Ch.Lakshmi Sravya、2 G.Mahesh、3 S.Koteswara Rao、4 B.Omkar Lakshmi Jagan 1,2,3 电子与计算机工程系、4 电子与电气工程系,K L 大学,贡土尔,印度 1 lakshmi.sravi7@gmail.com、2 mahesh88088@gmail.com、3 skrao@kluniversity.in、4 lakshmijagan@kluniversity.in 摘要:在水下,声纳浮标接收物体信息。声纳浮标生成物体距离和方位测量值。扩展卡尔曼滤波器用于处理噪声破坏的测量值,以生成物体运动参数 (OMP)。OMP通过超高频链路与飞机进行进一步处理。给出了模拟结果。关键词-全球定位系统、声纳浮标、物体运动分析、随机处理、统计随机处理
本文介绍了一项有关锂离子电池的电荷观察状态,用于嵌入式应用中的能量管理。对收费状态的了解对于这些电池的安全性和最佳用途至关重要。该研究的重点是在Spartan 6 FPGA上基于Kalman滤波器的观察者算法的开发和实施,即使可以从其实际状态开始初始化电池的电池,该算法可以准确估算电池的充电状态。在本文中,我们专注于FPGA进行快速计算的机会,该计算可以将FPGA用作BMS中的从属组件,并允许以低成本观察SOC大量的单元。在低成本FPGA上实施该观察者可能会导致各种应用中的电池管理系统(例如电动汽车和任何其他需要观察电池组充电状态)的电池管理系统的成本。通过模拟和实时测试验证了观察者模型。本研究提出了一种有希望的方法,可以准确估计锂离子电池的电荷状态,以用于各种应用中的E FFI能源管理。