推荐引用 推荐引用 G., Mohanapriya;Muthukumar S.;Santhosh Kumar S.;和 Shanmugapriya MM。“用于医学图像处理的卡尔曼布西滤波神经模糊图像去噪。”中智集合与系统 70, 1 (2024)。https://digitalrepository.unm.edu/nss_journal/vol70/iss1/19
摘要:基于卡尔曼滤波(KF)框架和机器学习算法的电池等效电路模型荷电状态(SOC)估计研究相对有限,大部分研究仅针对少数几种机器学习算法,缺乏全面的分析比较,且大部分研究侧重于通过机器学习算法获取卡尔曼滤波框架算法模型的状态空间参数,再将状态空间参数代入卡尔曼滤波框架算法中进行SOC估计,此类算法耦合性强,复杂度高,实用性不强。本研究旨在将机器学习与卡尔曼滤波框架算法相结合,将五种卡尔曼滤波框架算法的输入、输出和中间变量值的不同组合作为六种主流机器学习算法的输入,估计最终的SOC。这六种主流机器学习算法包括:线性回归、支持向量回归、XGBoost、AdaBoost、随机森林、LSTM;算法耦合度较低,无需进行双向参数调整,且不涉及机器学习与卡尔曼滤波框架算法之间。结果表明,集成学习算法与纯卡尔曼滤波框架或机器学习算法相比,估计精度有显著提高。在各类集成算法中,随机森林与卡尔曼滤波框架的估计精度最高,且实时性好。因此,可以在各种工程应用中实现。
1 伊斯坦布尔技术大学航空航天学院,34469 伊斯坦布尔,土耳其,收到日期:2022 年 3 月 24 日 修订日期:2022 年 6 月 8 日 接受日期:2022 年 6 月 20 日 摘要 Özet 在本研究中,提出了一种集成自适应 TRIAD/扩展卡尔曼滤波器 (EKF) 姿态估计系统,其中 TRIAD 和自适应 EKF 相结合以估计纳米卫星的姿态。作为系统的第一步,TRIAD 算法利用磁力计和太阳传感器测量结果产生初始粗四元数估计,然后将该粗估计直接输入到自适应 EKF。将姿态信息直接输入到滤波器相对减少了 EKF 带来的计算负担。作为系统的第二步,自适应 EKF 滤波 TRIAD 解并给出最终的四元数估计。同时,自适应 EKF 在传感器故障时使用单个缩放因子 (SSF) 重新调整测量噪声协方差矩阵,使整个系统对传感器故障更具鲁棒性。进行了几次模拟,并针对两种不同的故障类型(即姿态传感器中的噪声增量和连续偏差)测试了所提出的系统的性能。
摘要:运动想象 (MI) 具有频率特异性特征,是基于脑电图 (EEG) 的脑机接口识别操作员意图的范例之一。从理论上讲,在传统方法中很难在不产生很大延迟的情况下提取频率特异性特征。在本文中,我们尝试使用带有卡尔曼滤波器的周期性扰动观测器快速检测 alpha 和 beta 波段幅度。对原始 EEG 信号的响应表明,周期性扰动观测器可以比带通滤波器更快地提取 MI 的特征。
脑网络是复杂的动态系统,其中不同区域之间的定向相互作用在感觉、认知和运动过程的亚秒级尺度上发展。然而,由于神经信号及其未知噪声成分的高度非平稳性质,动态脑网络建模仍然是当代神经科学的主要挑战之一。在这里,我们提出了一种基于卡尔曼滤波器创新公式的新算法,该算法经过优化,可在未知噪声条件下跟踪快速发展的定向功能连接模式。自调节优化卡尔曼滤波器 (STOK) 是一种新型自适应滤波器,它嵌入自调节记忆衰减和递归正则化,以确保高网络跟踪精度、时间精度和对噪声的鲁棒性。为了验证所提出的算法,我们在现实替代网络和真实脑电图 (EEG) 数据中与经典卡尔曼滤波器进行了广泛的比较。在模拟和真实数据中,我们都表明 STOK 滤波器估计定向连接的时间频率模式具有显著优越的性能。STOK 滤波器的优势在真实 EEG 数据中更加明显,其中该算法从大鼠的颅脑 EEG 记录和人类视觉诱发电位中恢复了动态连接的潜在结构,与已知生理学高度一致。这些结果确立了 STOK 滤波器是模拟生物系统中动态网络结构的强大工具,有可能对大脑功能产生的网络状态的快速演变产生新的见解。
a 基尔大学医学心理学和医学社会学系,德国基尔 D-24113。b 基尔大学实验与应用物理研究所,德国基尔 24098。c 基尔大学神经儿科系,德国基尔 D-24098。d 明斯特大学生物磁学和生物信号分析研究所,德国明斯特 D-48149。e 基尔大学工程学院数字信号处理和系统理论组,德国基尔 D-24143。f 伯特利福音医院儿童和青少年精神病学和心理治疗系,德国比勒费尔德 33617。