▪ 免疫调节剂 ▪ 蛋白酶体抑制剂 • 该疾病对来那度胺具有耐药性。 • 会员之前未接受过所要求的药物治疗或针对任何靶点的其他 CAR-T 疗法。 • 会员的 ECOG 体能状态为 0 到 2。 • 会员的肾脏、肝脏、肺和心脏功能充足且稳定。 • 会员没有已知的活动性或既往中枢神经系统 (CNS) 受累病史,包括 CNS 多发性骨髓瘤。 • 会员没有临床显著的活动性感染。 • 会员没有活动性移植物抗宿主病。 • 会员没有活动性炎症性疾病。
本文从 2019 年 3 月在挪威胡斯塔德维卡发生的 Viking Sky 游轮故障(停电、失去推进力和近乎搁浅)中汲取教训。游轮行业的故障和事故吸引了全球媒体的关注,并可能严重影响相关公司和当局的声誉和业务绩效。采用系统方法调查和分析 (CAST),旨在通过系统方法最大限度地从 Viking Sky 的故障中吸取教训,并有助于减少游轮行业的故障。这项研究提出了三项主要建议:事故或故障前兆和恢复力指标概述;对其他游轮的安全建议;北极和南极地区增加游轮运营的经验教训和行动策略。研究发现,多种事故或故障前兆,例如润滑油水平低、涡轮增压器故障、大型柴油发电机不工作、恶劣天气导致安全设备无法运行以及其他前兆,导致 Viking Sky 在胡斯塔德维卡遇到故障和极度危急的情况。船长立即决定发出求救信号、船员的准备情况以及处理紧急情况的方式等弹性指标被发现对 Viking Sky 的危急情况产生了积极影响。本文还强调,适应
政策:我在政策执行和行为改变政策方面拥有丰富的经验,特别是在值得信赖和以人为本的人工智能领域。我的专业知识使我能够审查与人工智能相关的政策,并为制定欧盟委员会在社交媒体和执法方面的人工智能数字战略做出贡献。我撰写了报告并领导了关于边缘化群体的社交媒体代表性的工作,这些报告被用于制定对弱势群体相关问题敏感的社交媒体政策。我曾与联合国犯罪司法研究所和国际刑警组织合作,目前正在开发评估聊天机器人是否符合人权的工具,并制定执法中使用人工智能的指南,这将成为委员会促进负责任和合乎道德的人工智能技术部署的重要资源。
斯瓦米·维韦卡南达科学技术学院是一个非营利性机构,旨在促进高标准的技术和职业教育。在经验丰富的敬业教师和最先进的校园、研究设施的帮助下,该机构提供创新的、以职业为导向的学位课程,以满足行业和整个社会的需求。斯瓦米·维韦卡南达科学技术学院是印度东部最好的自筹资金工程学院之一,以其高质量的学术、优秀的基础设施、就业和 5.6 英亩郁郁葱葱的绿色环保校园而闻名。该学院获得了 AICTE 的批准,隶属于 MAKAUT 和 WBSCT&VE&SD,并获得了 NAAC 的认证。该学院拥有一个成熟的 IIC 小组,是印度国家数字图书馆、NPTEL 地方分会、IIF 学生分会的成员,与 Coursera 和 Internshala 合作,并参与了 NIRF 排名。该学院与 30 多个组织和机构签署了谅解备忘录。学院的显著特点是:高标准的教育和学习 ■ 经验丰富、敬业的教职员工 ■ 符合西孟加拉邦政府规定和指导方针的经济实惠的课程费用 ■ 空调教室,设备齐全的实验室 ■ 具有书库设施的优秀图书馆 ■ 无线网络和 1:1 互联网连接 ■ 绝佳的就业机会 ■ 为学生提供多种技能培训,就业前培养能力、软技能和技术技能 ■ 宿舍、食堂、音乐俱乐部和游乐场 ■ 位于加尔各答,乘坐公交、火车和地铁即可轻松到达。 学院拥有一支敬业、经验丰富、成就卓著的教职员工队伍,符合 AICTE 和 MAKAUT 的标准。此外,来自 JU、BESU、CU 的兼职教师也会访问校园,与学生分享宝贵经验,促进学生全面发展。学院拥有配备书库设施的电脑化图书馆,为学生提供最新的国内外期刊和参考书。阅览室可容纳 120 个座位。
Cheraghian 等人 [ 21 – 23 ] 在零样本 3 维模型分类方 面提出了 3 维点云的零样本学习方法、缓解 3 维零样 本学习中枢纽点问题的方法和基于直推式零样本学 习的 3 维点云分类方法,并将它们封装进一个全新 的零样本 3 维点云方法 [ 24 ] 中。以上方法均是利用已 知类样本的点云表征及其词向量对未知类别进行分 类,开创了零样本 3 维模型分类方法。近年来, CLIP 在零样本图像分类上取得了良好的效果,因此有研 究者将 CLIP 应用到零样本 3 维模型分类方法中, Zhang 等人 [ 25 ] 提出了基于 CLIP 的 3 维点云理解 (Point cloud understanding by CLIP, PointCLIP) 模型, PointCLIP 首先将 3 维点云投影成多个深度图,然 后利用 CLIP 的预训练图像编码器提取深度图特 征,同时将类别名称通过 CLIP 预先训练的文本编 码器提取文本特征。但是 PointCLIP 的性能受到深 度图和图像之间的域差异以及深度分布的多样性限 制。为了解决这一问题,基于图像 - 深度图预训练 CLIP 的点云分类方法 (transfer CLIP to Point cloud classification with image-depth pre-training, CLIP2Point) [ 26 ] 将跨模态学习与模态内学习相结合 训练了一个深度图编码器。在分类时,冻结 CLIP 的图像编码器,使用深度图编码器提取深度图特 征,该方法缓解了深度图和图像间的模型差异。用 于 3 维理解的图像 - 文本 - 点云一致性表征学习方法 (learning Unified representation of Language, Im- age and Point cloud for 3D understanding, ULIP) [ 27 ] 构建了一个图像、文本和点云 3 种模态的 统一嵌入空间,该方法利用大规模图像 - 文本对预 训练的视觉语言模型,并将 3 维点云编码器的特征 空间与预先对齐的视觉 - 文本特征空间对齐,大幅 提高了 3 维模型的识别能力。与之相似的是,基于 提示文本微调的 3 维识别方法 (CLIP Goes 3D, CG3D) [ 28 ] 同样使用 3 元组形式确保同一类别的 3 维模 型特征和图像特征之间以及 3 维模型特征和文本特 征之间存在相似性,从而使点云编码器获得零样本 识别的能力。另外, PointCLIP V2 [ 29 ] 在 Point- CLIP 的基础之上,通过利用更先进的投影算法和 更详细的 3 维模型描述,显着提高了零样本 3 维模型 分类准确率。本文采用语义增强 CLIP 解决图像和文 本的语义鸿沟问题,通过在语义层面为图像和文本 提供更多相似的语义信息,使图像和文本对齐更具有 一致性,从而有效提高 3 维模型的零样本分类性能。 2.2 提示工程
N.V. Borzova,L.D。 varbanets分布,性质和α-半乳糖苷酶的实际意义。 微生物学期。 2024,N.V. Borzova,L.D。varbanets分布,性质和α-半乳糖苷酶的实际意义。微生物学期。2024,
乍一看,使用 β 受体阻滞剂治疗心力衰竭的想法似乎违反直觉。β 受体阻滞剂可以降低血压,但许多心力衰竭患者已经出现低血压。此外,β 受体阻滞剂具有负性肌力作用,这似乎会加剧心力衰竭所致的心脏功能减弱。尽管如此,曾经被禁止用于心力衰竭的 β 受体阻滞剂正逐渐被接受作为治疗方案的一部分。事实上,卡维地洛是美国食品和药物管理局批准的最新 β 受体阻滞剂,可用于治疗心力衰竭,因为临床研究表明它可以降低发病率和死亡率,甚至可能减缓心力衰竭的进展。人们对 β 受体阻滞剂治疗心力衰竭重新产生兴趣的原因是,随着对其病理生理学的了解不断增加,近几年治疗方法发生了巨大变化。 1-3 治疗的重点已经从充血性心力衰竭的水肿转移到心脏损伤和血流受损时发生的神经体液和炎症反应。4 本文总结了当前治疗心力衰竭的一些想法,包括为什么、何时以及如何使用卡维地洛。
她的企业家精神使她成为位于波士顿的农业生物技术公司Indigo AG的创始科学家之一。在那里,她作为产品科学总监发挥了关键作用,为产品发现,开发,知识产权,监管和公司的前五个微生物产品启动做出了重大贡献。她在建立高性能团队和管理大规模项目方面的专业知识方面也受到人们的追捧,以支持公司从创业阶段到1000多名员工的增长。在波士顿的合成生物学公司Joyn Bio(美国),她通过建立疾病控制计划并启动监管科学方法,曾担任高级主任,从而巩固了她作为农业技术创新领导者的声誉。
[C125] G. Eichler、B. Seyoum、K.-L. Chiu 和 L. P. Carloni。MindCrypt:大脑作为基于 SoC 的脑机接口的随机数生成器。在国际计算机设计会议 (ICCD) 论文集,第 70-77 页,2023 年 11 月。[C124] G. Tombesi、J. Zuckerman、P. Mantovani、D. Giri、M. Cassel Dos Santos、T. Jia、David Brooks、G.-Y。Wei 和 L. P. Carloni。SoCProbe:基于异构 NoC 的 SoC 的组合后硅验证。在国际片上网络研讨会 (NOCS) 论文集,第 1:1–1:6 页,2023 年 9 月。[C123] B. Stitic、L. Urbinati、G. Di Guglielmo、L. Carloni 和 M.R.Casu。增强的机器学习流程,用于微波传感系统检测食品中的污染物。在 IEEE 农业食品电子会议 (CAFE) 上,2023 年 9 月。[C122] N. Zeng、T. Jung、M. Sharma、G. Eichler、J. Fabbri、R. J.Cotton、E. Spinazzi、B. Youngerman、L. Carloni 和 K. L. Shepard。一种无线、机械柔性、25 µ m 厚、65,536 通道硬膜下表面记录和刺激微电极阵列,带有集成天线。在 VLSI 电路研讨会上,第 1-2 页,2023 年 6 月。[C121] F. Gao, T.-J.Chang, A. Li, M. Orenes-Vera, D. Giri, P. Jackson, A. Ning, G. Tziantzioulis, J. Zuckerman, J. Tu, K. Xu, G. Chirkov, G. Tombesi, J. Balkind, M. Martonosi, L. Carloni 和 D. Wentzlaffi。DECADES:67mm2、1.46TOPS、55 Giga 缓存一致的 64 位 RISC-V 指令/秒、异构多核 SoC,包含 109 个图块,包括加速器、智能存储和 12nm FinFET 中的 eF-PGA。在论文集定制集成电路会议 (CICC) 中,第 1-2 页,2023 年 4 月。[C120] K.-L. Chiu、G. Eichler、B. Seyoum 和 L. P. Carloni。EigenEdge:使用 risc-v 和硬件加速器在边缘实时执行软件。在网络物理系统和物联网周刊中,第 1-6 页,2023 年 5 月。[C119] B. Seyoum、D. Giri、K.-L. Chiu、B. Natter 和 L. P. Carloni。PR-ESP:用于设计和编程部分可重构 SoC 的开源平台。在欧洲设计、自动化和测试会议 (DATE) 的论文集,第 1-6 页,2023 年 3 月。[C118] T. Tambe、J. Zhang、C. Hooper、T. Jia、P. N. Whatmough、J. Zuckerman、M. Cassel、E. J. Loscalzo、D. Giri、K. L. Shepard、L. P. Carloni、A. M. Rush、D. Brooks 和 G.-Y。魏。在 ISSCC 技术论文摘要中,第 342-343 页,2023 年。魏,12nm 18.1TFLOPs/W 稀疏变换器处理器,具有基于熵的早期退出、混合精度预测和细粒度电源管理。[C117] B. Seyoum、D. Giri、K.-L. Chiu 和 L. P. Carloni。用于设计和编程部分可重构异构 SoC 的开源平台。嵌入式系统编译器、架构和综合国际会议记录 (CASES),第 25-26 页,2022 年 10 月。[C116] T. Jia、P. Mantovani、M. Cassel Dos Santos、D. Giri、J. Zuckerman、E. J. Loscalzo、M. Cochet、K. Swaminathan、G. Tombesi、J. J. Zhang、N. Chandramoorthy、J.-D. Wellman,K. Tien,L.P. Carloni,K. Shepard,D. Brooks,G.-Y。