挑战:有限的访问地球观察和GNSS(全球导航卫星系统)数据。用于数据访问的重叠平台,导致数据不一致和效率低下。机会:ESA的哥白尼开放式枢纽和NASA的地球数据平台之类的举措旨在减少数据重复并提高数据共享效率,从而使农业研究和应用受益。
人工智能算法在 GNSS 中执行的可能性 Darshna Jagiwala(1)、Shweta N. Shah(2) (1) 女科学家,DST (2) 助理教授,SVNIT,印度 摘要 大量研究验证了在全球导航卫星系统 (GNSS) 领域使用人工智能 (AI) 算法的机会。实现智能有两种方式:一种是通过机器学习 (ML),另一种是通过深度学习 (DL)。最常见的是,支持向量机 (SVM) 和卷积神经网络 (CNN) 是人工智能的重要算法,在文献中用于提高 GNSS 系统的定位精度。本文通过考虑 GNSS 接收器在射频 (RF) 前端级别、预相关级别、后相关级别和导航级别的不同阶段来进行文献综述,这将更好地理解 AI 在该领域的实施。主要研究工作是在后相关阶段进行的,其中使用了不同的数据格式,如相关输出、国家海洋电子协会 (NMEA) 数据和接收器独立交换格式 (RINEX) 数据。除此之外,本文还讨论了与 AI 算法应用相关的威胁和风险因素。1.简介 GNSS 使用精确的定时信息、定位和同步技术提供全球和实时服务。目前,美国的全球定位系统(GPS)、俄罗斯的全球导航卫星系统(GLONASS)、欧洲的伽利略(GALILEO)和中国的北斗卫星导航系统(BDS)是全面运行的GNSS系统。此外,印度的印度星座导航(NavIC)和日本的准天顶卫星系统(QZSS)都是独立自主的区域导航系统。近年来,GNSS应用越来越精确,其精确度为广泛的应用打开了大门。[1]。卫星导航系统是根据发现的物理定律设计的[2]。• GNSS系统背后的基本思想是卫星在太空中传输信号。在这里,卫星在轨道上的位置遵循开普勒行星运动定律。• 这些信号由地球表面或附近的接收器接收。扩频技术用于获取从地球轨道发射的非常微弱的卫星信号。
众所周知,全球导航卫星系统 (GNSS) 如全球定位系统 (GPS) 可以提供优于 40 纳秒的 UTC 同步。然而,只有配备校准接收机的静止平台才能达到这一极限。对于移动平台,GNSS 提供的时间基准受更多系统性因素影响,包括服务可用性和可靠性。此外,越来越多的平台需要高精度惯性导航,而 GNSS 并不是一个可选项。这类平台的例子有潜艇和深空任务。最后但并非最不重要的是,高度可靠和精确的时间基准可用于升级 GNSS 星座卫星上的现有设施。自主时间基准生成的关键因素是振荡器,它可以提供固有的高稳定性(一年 1 μ s 或 3 × 10 − 14 的相对不稳定性 [ 1 ])。目前,只有氢原子钟才能达到这种性能,氢原子钟确实已经小型化,并构成了伽利略欧洲全球导航卫星系统卫星上的主要时基生成。目前,冷原子原子钟在全球多家计量机构中实现了最精确的主频率标准 [ 2 ],并且由于 PHARAO 时钟 [ 3 ],它还将出现在国际空间站上。尽管取得了这些巨大的成就,但还没有一种机载冷原子钟能够实现类似的性能
AAC 航空公司行政通信 ACARS 飞机通信寻址和报告系统 ACL 空中交通管制许可 ACM CPDLC — 频率更改 ACTS 先进通信技术和服务 ADAP 机载参数自动下行链路 ADS 自动相关监视 ADS-B ADS 广播 ADS-C ADS 合同(点对点) AIS/NOTAM FIS — 航空信息服务/飞行员通知 AMSS 航空移动卫星系统 AOC 航空公司运营通信 APC 航空旅客通信 ASAS 飞机分离保证系统 ATC 空中交通管制 ATCC 空中交通管制中心 ATIS FIS - 自动终端信息服务 ATM 空中交通管理 ATMode 异步传输模式 ATN-OSI 航空电信网络 - OSI 协议 ATS 空中交通服务 B-ISDN 宽带综合服务数字网络 CAP ADAP - 控制器访问参数 CDM 协作决策 CIC CPDLC - 许可和信息通信 CFMU 中央流量管理单元 CNS/ATM 通信导航监视、空中交通管理 COIAS 融合 IPv6 卫星 ATMode COTS 商用现货 CPDLC 控制器至飞行员数据链路通信 DCL 出发许可 DGNSS差分全球导航卫星系统
解释性说明 全球导航卫星系统国际委员会 (ICG) 作为一种最佳合作机制,其优势在于提供了一个灵活的论坛,全球导航卫星系统 (GNSS) 提供商和用户可在此聚集在一起讨论有关使用多个 GNSS 信号的所有事项。ICG 的四个工作组(系统、信号和服务 (S 工作组);提高 GNSS 性能、新服务和能力 (B 工作组);信息传播和能力建设 (C 工作组);以及参考框架、授时和应用 (D 工作组))负责解决技术问题。小组和工作队通过履行具体职责和产生明确成果来支持工作组的职能。本汇编转载了 ICG 通过的各工作组的建议。有关 ICG 工作组的更多详细信息,请参阅 ICG 信息门户:https://www.unoosa.org/oosa/en/ourwork/icg/working-groups.html 必要时,应将汇编与联合国大会 A/AC.105/ 系列文件一起阅读,这些文件涉及自 2006 年以来举行的 ICG 年度会议,其中也反映了 ICG 提出的建议。文件以联合国所有官方语言提供,可从 ICG 信息门户下载:https://www.unoosa.org/oosa/en/ourwork/icg/annual-meetings.html
本文介绍了全球导航卫星系统 (GNSS) 网络在海上空间通信、导航和监视 (CNS) 中的结构,用于增强部署无源、有源和混合全球定位卫星系统 (GDSS) 网络的船舶的导航和定位。这些 GNSS 网络必须加强安全性并控制远洋船舶在海洋和内陆水域的航行,改善货物的物流和运输,以及船上船员和乘客的安全。与地球静止轨道 (GEO) 卫星星座集成的海上 GNSS 网络正在提供重要的全球卫星增强系统 (GSAS) 架构,该架构由两个第一代 GNSS 即 GNSS-1 基础设施建立。GNSS-1 网络由两个子网组成,例如美国全球定位系统 (GPS) 和俄罗斯全球卫星导航系统 (GLONASS)。这两个 GNSS-1 网络在远洋船舶的非常精确的计时、跟踪、引导、定位和导航方面都发挥着重要作用。目前,GNSS-1 网络(GPS 和 GLONASS)均用于海事和许多其他移动和固定应用,以提供可用于定位远洋船舶的增强精度和高完整性监控。为了改进 GNSS-1 网络,有必要在多个区域卫星增强系统 (RSAS) 内进行增强,作为 GSAS 基础设施的集成部分。
1“太空竞赛”,历史com,2010年2月22日,https://www.history.com/topics/cold-war/space-race。2 Jim Baumann,“来自太空的矿物探索”,Esri(博客),2019年12月11日,https://www.esri.com/about/weysroom/weysroom/arcwatch/arcwatch/mineral-ecploration-in-the-the-the-the-hyperspectral-zone/。 3 Virgil Labrador,“卫星通讯”,《大不列颠百科全书》,2019年11月23日访问,https:// www.britannica.com/technology/satellite-communication。 4 Richard H. Waring和Steven W. Runn,“景观和区域生态系统分析的空间缩放方法”,《森林生态系统》(圣地亚哥:学术出版社,2007年),第三版,225-V,https:// https:// doi。 org/10.1016/b978-012370605-8.50014-1。 5 Justin Sheffield等人,“水资源管理的卫星遥感:支持数据贫困地区可持续发展的潜力”,《水资源研究》 54,第1期。 12(2018年12月):9724–58,https://doi.org/10.1029/2017WR022437。 6 Scott Madry,“全球导航卫星系统及其应用”,Springer Space Development(纽约,纽约:Springer,2015年),https://doi.org/10.1007/978-1-4939-2608-4。2 Jim Baumann,“来自太空的矿物探索”,Esri(博客),2019年12月11日,https://www.esri.com/about/weysroom/weysroom/arcwatch/arcwatch/mineral-ecploration-in-the-the-the-the-hyperspectral-zone/。3 Virgil Labrador,“卫星通讯”,《大不列颠百科全书》,2019年11月23日访问,https:// www.britannica.com/technology/satellite-communication。4 Richard H. Waring和Steven W. Runn,“景观和区域生态系统分析的空间缩放方法”,《森林生态系统》(圣地亚哥:学术出版社,2007年),第三版,225-V,https:// https:// doi。org/10.1016/b978-012370605-8.50014-1。5 Justin Sheffield等人,“水资源管理的卫星遥感:支持数据贫困地区可持续发展的潜力”,《水资源研究》 54,第1期。12(2018年12月):9724–58,https://doi.org/10.1029/2017WR022437。6 Scott Madry,“全球导航卫星系统及其应用”,Springer Space Development(纽约,纽约:Springer,2015年),https://doi.org/10.1007/978-1-4939-2608-4。6 Scott Madry,“全球导航卫星系统及其应用”,Springer Space Development(纽约,纽约:Springer,2015年),https://doi.org/10.1007/978-1-4939-2608-4。
在空间导航战(NAVWAR)概念中,欧盟与美国在冷谈判期间平衡太空地位是取消NAVWAR的主要目的。欧洲新导航卫星系统伽利略将与现有的美国导航卫星系统一起处理新的潜在作战领域和服务。然而,所谓的美国NAVSTAR GPS系统在同一个统一的空间中运行,它目前是世界上占主导地位和标准的导航系统,因此,它被认为是该领域的垄断。同时,伽利略系统将在这个单一空间中共享GPS系统,它将提高性能和准确性,并将与平民分享其利益。此外,欧洲人将追求欧盟对美国的独立性以及经济份额。本文的目的是确定欧盟和美国这两个利益相关者在太空领域有利益的理由和理由。这些利益最初是两个独立的系统,经过长时间的谈判,最终成为两个竞争和合作的系统。此外,本文将确定双方为保持两个系统的竞争力、现代化和活力、成为一个高效的系统(类似于全球互联网)而做出的积极技术努力。但是,由于本文后面将解释的原因,我们将较少关注其他系统,例如俄罗斯的 GLONASS 系统、中国的北斗系统和其他增强系统。