• 对于根据第 9.11A 款进行协调,请注意《程序规则》中与第 9.11A 款相关的第 2.3 节:该程序适用于所有其他空间和地面业务,涉及那些拥有平等权利划分并在本条款适用的具体脚注中提及的卫星业务。(查看《程序规则》中的表 9.11A-1)
混合卫星网络 (HSN) 使用独立拥有和运营的地面和太空组件来实现太空系统,该系统可在不同的任务和连接点之间提供扩展的全球服务。HSN 架构通常由独立拥有的终端、天线、卫星、有效载荷或其他跨不同网络通信的组件组合而成。HSN 可以与政府系统和关键基础设施(由国土安全部定义)交互,以提供卫星通信、定位、导航和计时 (PNT)、遥感、天气监测和成像等服务。HSN 中的组件之间的信任程度可能有所不同,需要建立框架来建立各个组件的机密性和完整性,同时仍能提供所需的共享服务。
记录并维护组件清单,以包含反映当前系统的基于云的资源。考虑采用配置管理工具来记录所有物理组件的物理位置并通过物理检查进行验证。在物理检查期间,识别设备及其物理接口。
卫星通信虽然在其他信息传输技术(例如光纤连接,Wi-Fi或LTE)中通常没有引起人们的注意,但在整个社区的日常生活中都起着关键作用。即使在其他无线电通信方式不足或不足的地方,它也可以在长距离上进行快速可靠的通信。在世界上许多遥不可及的地区,建筑电信基础设施是无利可图或在技术上不可能的,卫星系统是唯一提供访问互联网的可能性,因此:在线教育,远程工作,远程工作,访问信息和数字服务的机会。诸如GPS(全球定位系统)之类的系统依赖于卫星来提供位置和导航服务,例如在车辆导航,航空,海上和日常生活中必不可少的位置和导航服务,例如智能手机上的地图。卫星传输可实现全球电视和广播内容的广播,从而访问电视节目,电影和音乐。最后,部署在各种地球轨道上的卫星用于监测气候变化,管理和应对自然灾害,提供迅速采取行动并最小化损害所需的关键信息,并提供电信服务,例如卫星电话,这对于地面网络网络失败至关重要。
由于其广泛的地理覆盖范围和灵活的部署能力,卫星网络的最新进展引起了人们的兴趣,为全球通信和转变传统沟通方法提供了有希望的解决方案。尽管有这些进步,但当前的卫星系统仍面临诸如高繁殖延迟和高纬度区域的覆盖范围不足之处,特别是在地静止(GEO)系统中。低地球轨道(LEO)系统可以解决这些问题,主要用于语音服务,如虹膜系统所示,但遇到了财务困难。本研究旨在解决卫星网络中的安全问题,这是一个关键问题,因为这些网络越来越依赖于IP协议以及陆地节点和卫星链接的混合配置。以前的工作已经确定了对卫星网络的各种潜在安全攻击,并提出了不同的解决方案,但是这些解决方案通常缺乏全面的效力和鲁棒性。我们的方法涉及分析类似于Iridium System的卫星网络中的安全漏洞,该系统包括每个卫星上的卫星间链接(ISL)和路由器。我们审查并评估现有的安全措施,并提出增强功能以提高其有效性。我们的结果表明在当前系统中有很大的漏洞,但也表明,通过有针对性的改进,可以大大提高安全性。这项研究的含义是深刻的,表明更安全的卫星网络可以更好地支持关键的全球通信和服务,包括宽带互联网和数据服务,从而增强其可靠性和用户信任
太空系统中的网络安全已成为关注的关键领域,因为人们对卫星和基于空间的资产的沟通,导航,军事行动和科学探索的依赖越来越多。 随着太空活动的迅速扩大,政府和商业实体都投资了卫星技术,这反过来又增加了针对这些基础设施的网络威胁的风险[1]。 现代卫星系统的相互联系性质及其与地面网络的集成使它们容易受到网络攻击的影响,从数据拦截到全尺度的操作中断。 与常规IT系统不同,空间资产在高风险环境中运行,直接干预的机会有限,因此其网络安全框架从根本上截然不同[2]。太空系统中的网络安全已成为关注的关键领域,因为人们对卫星和基于空间的资产的沟通,导航,军事行动和科学探索的依赖越来越多。随着太空活动的迅速扩大,政府和商业实体都投资了卫星技术,这反过来又增加了针对这些基础设施的网络威胁的风险[1]。现代卫星系统的相互联系性质及其与地面网络的集成使它们容易受到网络攻击的影响,从数据拦截到全尺度的操作中断。与常规IT系统不同,空间资产在高风险环境中运行,直接干预的机会有限,因此其网络安全框架从根本上截然不同[2]。
摘要 - 本文档调查了低地球轨道(LEO)卫星网络中的最新和当前发展。它介绍了卫星网络的简要概述,以便将问题与之相关。然后,它重点介绍了新兴域中的当前研究工作,例如机器学习,软件模式网络(SDN),低延迟网络,绿色网络,信息中心网络(ICN)等。对于每个这些,它都提出了重新工作和在该新兴领域内的研究界的方向。本文还描述了3GPP和IETF中的标准化工作的当前状态,用于LEO卫星网络。尤其是我们详细介绍了这些标准机构指向使用间卫星链接的LEO网络指向的方向。最后,描述和鼓励了一些未来的挑战和有趣的研究方向。这是学术和工业标准化环境中LEO卫星研究现状的概述,我们认为这将有助于了解当前的最新技术状况。
NTN 解决方案 1 。计划中的 Release-18 工作仍包括 NTN 的标准化活动,以进一步定义无线电第 2 层和第 3 层细节,以允许非地面节点在无线接入网络 (RAN) 2 中运行的解决方案。NTN 可以为地面网络带来许多优势 [ 2 ]。促进网络传播,为目前未服务或服务不足的大型区域带来连接,在非正常情况下提供备用链路,例如主要地面基础设施中断或故障,并卸载地面网络,为用户提供额外的连接,以解决地面网络上的流量高峰并保持特定丢失或延迟敏感流的性能只是其中的几个。然而,尽管已经进行了大量研究和开发工作,但仍有几个挑战和悬而未决的问题需要妥善研究和解决,以实现地面和非地面网络之间的无缝集成 [ 3 , 4 ],例如定义适当的随机接入程序、定时提前策略和切换管理策略 [ 5 ]。人工智能 (AI) 和机器学习 (ML) 原理及相关解决方案的使用是通信网络演进的另一个重要支柱 [ 6 ]。再次查看 3GPP Release-18 计划内容列表,很明显其中包括“下一代 RAN (NG-RAN) 的 AI/ML”、“AI/ML - 空中接口”和“AI/ML 研究、多媒体编解码器、系统和服务”主题,更广泛地说,文献中有大量的研究贡献,其中还包括在 NTN 中采用 AL/ML 技术的研究和解决方案 [ 7 ]。无线电资源管理、移动性管理和非地面/地面网络集成只是 AI/ML 解决方案可以帮助改进的几个方面。然而,由于仍有挑战和悬而未决的问题需要研究和解决 [8],人们已经考虑将 AI/ML 策略全面集成到通信网络中,尤其是从标准化的角度来看,这是 6G 或超 5G (B5G) 网络演进的问题,而不是 5G 网络整合的问题。因此,这也反映在卫星-地面集成系统中 [9]。本文介绍了仍在进行的欧洲航天局 (ESA) 项目“数据驱动的实时网络管理网络控制器和编排器 - ANChOR”[10] 的现状,该项目旨在为卫星真正融入 5G 时代及以后做出进一步贡献。具体来说,我们将重点描述所考虑的场景之一、相关的网络架构和正在开发的系统原型(第 2 节)、用于驱动最佳卫星网关站动态选择的基于 AI 的方法(第 3 节)以及当前和初步获得的结果(第 4 和 5 节)。最后,在第 6 节得出结论。
摘要 — 低地球轨道 (LEO) 上的密集小型卫星网络 (DSSN) 可使多种移动地面通信系统 (MTCS) 受益。然而,只有通过仔细考虑 DSSN 基础设施并确定合适的 DSSN 技术才能实现潜在优势。在本文中,我们讨论了 DSSN 基础设施的几个组成部分,包括卫星编队、轨道路径、卫星间通信 (ISC) 链路以及从源到目的地的数据传输通信架构。我们还回顾了 DSSN 的重要技术以及在 DSSN 中使用这些技术所面临的挑战。本文还确定了几个开放的研究方向,以增强 DSSN 对 MTCS 的优势。还包括一个案例研究,展示了 DSSN 在 MTCS 中的集成优势。